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Zusammenfassung 
Für die automatische Genomannotierung werden Methoden aus der Informatik 

benötigt, um die Masse dieser neu bestimmten Sequenzdaten verstehen und 

interpretieren zu können. Zu diesem Zweck wurden zwei neuartige Methoden 

entwickelt. Ihre Anwendung zur Analyse des Genoms von Drosophila melanogaster 

wird hier vorgestellt.  

Die erste Methode ist ein Neuronales Netzwerk, das die strukturellen Eigenschaften 

und den Aufbau von eukaryontischen Promotorregionen modelliert. Dieses Modell wird 

dazu eingesetzt, Transkriptionsstartstellen in genomischen Sequenzen von Drosophila 

vorherzusagen. Das Modell ist ein Time-Delay Neuronales Netz, welches einen 

Spezialfall der feed-forward Topologie darstellt. Diese Netzwerkarchitektur wurde 

ursprünglich zur Erkennung gesprochener Sprache entwickelt und angewendet. Die 

Time-Delay Archtitektur erlaubt eine positionsunabhängige Verarbeitung der 

Eingabedaten und kann die variable Distanz zwischen den funktionellen 

Bindungsstellen eines Promotors modellieren. Diese variable Distanz ist ein 

wesentliches Charakeristikum des biologischen Transkriptions-prozesses.  In einem 

ersten Schritt werden zwei voneinander unabhängige Neuronale Netze trainiert, eines 

für die Erkennung der TATA-Box und eines für die Erkennung der Initiator-

Bindungsstelle. Dabei werden die statistischen Merkmale dieser beiden Muster anhand 

der vorhandenen Promoterdatensätze zunächst positionsspezifisch erlernt. Das Time-

Delay Neuronale Netz integriert daraufhin die unabhängig trainierten Netzwerke und 

erfaßt so die potentiell nichtlinearen Abhängigkeiten und variablen Entfernungen 

zwischen den Sequenzen der beiden Bindungsstellen. Dieses Modell wurde 

anschließend auf einer Testmenge aus sogenannten Kernpromotoren (core promoters) 

angewendet, welche die unmittelbare Region um den Transkriptionsstart umfassen 

(+40..-11). Dabei ergab sich, dass die Klassifikationsrate bereits existierender Verfahren 

(statistische Klassifikatoren bzw. einfache Neuronale Netze) verbessert werden konnte. 
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Das Time-Delay Neuronale Netz wurde in einem Computerprogamm, NNPP, 

implementiert. Die Besonderheit des Programms besteht darin, daß der 

Transkriptionsstart positionsgenau vorhergesagt werden kann. Außerdem wird darauf 

eingegangen, daß das Programm nur eine kurze Berechnungszeit benötigt, und wie es 

leicht in einem kompletten Annotierungssystem verwendet werden kann. Als Beispiel 

wird NNPP in das im folgenden beschriebene GENIE-System integriert und die 

resultierenden Ergebnisse präsentiert. Die Vorhersagegenauigkeit des Programs ist 

besser als andere, sogenannte signalbasierte Methoden, und mindestens ebensogut wie 

sogenannte inhaltsbasierte Methoden.  

Ein Test auf einer großen Menge genomischer Sequenzen ergab eine Vorhersage-

genauigkeit von 75 Prozent (69 von 92 Promotoren wurden erkannt), mit einer falsch 

positiven Vorhersagerate von 1/547 Basen. Für das in GENIE integrierte System fällt 

die Vorhersagerate auf 32,6 Prozent (30/92), aber dafür ist die falsch positive Rate 

erheblich verbessert (1/16,729 Basen). Die positive Vorhersagerate ist niedriger, da 

durch die Restriktionen im GENIE-System die Vorhersage auf die Region vor einem 

vorhergesagten Gen eingeschränkt ist. 

Das zweite vorgestellte System ist ein Wahrscheinlichkeitsmodell der 

eukaryontischen Genstruktur und deren spezifischer Eigenschaften für Drosophila 

melanogaster, ein generalisiertes Hidden-Markov-Modell (GHMM). Sowohl für die 

einzelnen Signale wie den Transkriptions- und Translationsstart und die Spleißstellen, 

als auch für Regionen wie Exons, Introns und die intergenische Region, werden jeweils 

Wahrscheinlichkeiten berechnet. Modellparameter für diese Regionen und Signale 

werden extern bestimmt. Für codierende Bereiche werden beispielsweise die 

Verwendung und Bevorzugung bestimmter Codons als charakteristische Merkmale 

eingesetzt. Als Sensoren für Signale sind sogenannte Gewichtsmatrizen integriert, 

welche die Auftrittswahrscheinlichkeiten der Nukleotide an den einzelnen Positionen 

beschreiben. Die Teilmodelle werden unabhängig mit einem Satz von repräsentativen, 

bekannten Drosophila-Genen trainiert. Zusätzlich zu diesen Modellen, welche die 

statistischen Eigenschaften von Genen ausschließlich anhand von bekannten 

Gensequenzen erlernen und daher "ab initio" genannt werden, wird eine neue Methode 

für die Integration von EST-Sequenzen vorgestellt. Diese Methode zwingt das GHMM 

dazu, ein Intron vorherzusagen, wenn die beiden benachbarten Sequenz-bereiche von 

ein und derselben EST-Sequenz überlappt werden. Dafür wird die gesamte EST-
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Datenbank für Drosophila benutzt. Sollte eine 5' und eine 3' EST-Sequenz von dem 

gleichen cDNA-Klon vorhanden sein, so wird diese Information benutzt, um den Start 

und das Ende eines Gens zu markieren. 

Die Entwicklung des GENIE-Computerprogramms wird erläutert. Dieses Program 

kann sowohl mehrere komplette wie auch zum Teil unvollständige  Genstrukturen 

innerhalb derselben Sequenz von Drosophila identifizieren.  Weitere besondere 

Neuheiten des Systems, neben der Integration der  EST-Information, sind die 

Integration von Ähnlichkeiten zu Proteinsequenzen in anderen Organismen und die 

Bewertungsmethode an sich, die eine Gesamtwahrscheinlichkeit anhand aller 

Teilmodelle für ein bestimmtes Gen berechnet, einen sogenannten gene parse. 

Außerdem ist das Modell besonders flexibel, so daß verschiedene externe Untermodelle 

sehr leicht integriert werden können. Dieses wird am Beispiel des NNPP-Programmes 

gezeigt. 

Um die Genauigkeit eines ab-initio-Genvorhersageprogramms wie z. B. GENIE zu 

messen, und um die Nützlichkeit eines solchen Systems zu demonstrieren, wurde ein 

internationales Experiment durchgeführt. Für dieses Genome Annotation Assessment 

Project (GASP) wurde eine besonders detailliert untersuchte Genomregion ausgewählt -

- die Adh-Region von Drosophila, welche 222 annotierte Gene enthält. Die 

eingesandten Computervorhersagen von den verschiedenen Gruppen wurden anhand 

von hochqualitativen, unveröffentlichten cDNA-Sequenzen, von denen man die genaue 

Genstruktur in der DNA leicht direkt ableiten kann, ausgewertet. Eine zweite, 

vollständigere Menge von Genen für die Auswertung wurde aus einer kürzlich 

durchgeführten, detaillierten Studie dieser Region übernommen. Im Rahmen des GASP-

Experimentes hat die Drosophila-Version des GENIE-Programms, welches EST-

Sequenzen als zusätzliche Information für die Erkennung von Genstrukturen benutzt, 

besonders gut abgeschnitten. Über 95 Prozent der codierenden Nukleotide in der Region 

konnten korrekt bestimmt werden. Außerdem überlappen 90 Prozent der gesamten, 

vorhergesagten Genstrukturen zumindest teilweise die vorher annotierten 222 Genen 

aus der Studie. Es wurden 26 zusätzliche Gene gefunden, von denen einige 

wahrscheinlich falsch positive Vorhersagen sind. Die von GENIE ermittelten Enden der 

Exons, die Spleißstellen, wurden als besonders zuverlässig eingeschätzt: 77 Prozent der 

durch cDNA-Sequenzen bestätigten Exons wurden korrekt von GENIE vorhergesagt. 

Von den 43 annotierten Genen aus der ersten Testmenge wurden 19 in der 
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Gesamtstruktur absolut exakt gefunden. Dieses bedeutet, daß für etwa 50 Prozent der 

Vorhersagen die Proteinsequenzen komplett und korrekt bestimmt werden können. 

Eine weitere, bedeutende Anwendung des NNPP-Programmes zur Vorhersage von 

Transkriptionstartstellen wird gegen Ende der Arbeit vorgestellt und diskutiert. In dieser 

Anwendung wurde ein potenzieller bisher unbekannter Transkriptionsstart und damit 

außerdem eine verlängerte kodierende Gensequenz für das C. elegans Gen unc-86 in 

silico von NNPP vorhergesagt. Die Vorhersage konnte mittlerweile in verschiedenen 

biologischen Experimenten, darunter die neueste Primer-Extension-Methode RACE 

sowie verschiedene cDNA Library Screening Methoden mit ausgewählten Primers aus 

der Transkriptionsregion, bestätigt werden. 

Die generellen Anwendungsmöglichkeiten und Anpassungmöglichkeiten der 

entwickelten Methoden werden am Ende erläutert. Wie die  Ergebnisse zeigen, können 

die hier entwickelten, analytischen Methoden auch für andere eukaryontische Genome, 

wie z.B. das menschliche Genom, angewendet werden. 

Die vorgelegte Arbeit ist somit eine umfassende Studie über die Entwicklung und 

Anwendung neuer Technologien zur automatischen Erkennung von Genstrukturen und 

der Regulation von Genen im Genom von Drosophila melanogaster. 
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Thesis abstract 
Computational methods for automated genome annotation are critical to 

understanding and interpreting the bewildering mass of genomic sequence data 

presently being generated and released. Two such methods, both novel, have been 

developed and their application for analysis of the Drosophila melanogaster genome are 

presented. The first represents a neural network model of the structural and 

compositional properties of a eukaryotic core promoter region. It is applied to the 

problem of predicting transcription start sites in genomic sequences of Drosophila. The 

model uses a time-delay architecture a special case of a feed-forward neural network 

that originally was developed for speech recognition. The structure of this model allows 

for variable spacing between functional binding sites, which is known to play a key role 

in the transcription initiation process. Individual neural networks for the recognition of 

the TATA box and the initiator binding sites were trained specifically to recognize the 

peculiar position of these consensus sequences in a series of eukaryotic promoters. 

During this training the statistical properties of the nucleotides in the binding sites were 

learned. The combined time-delay neural network model then incorporates these 

individual networks and captures potentially important dependencies between the 

individual binding sites. Application of this model to a test set of core promoters not 

only gave better discrimination of potential promoter sites than previous statistical or 

neural network models, but also revealed indirectly subtle properties of the transcription 

initiation signals which allowed to deduce certain aspects of their biochemical function. 

The development of a computer program (NNPP), that identifies potential transcription 

start sites in genomic DNA using the above mentioned time-delay neural network model 

is described. The uniqueness of the program consists in the ability to recognize precisely 

the position of a transcription start site for a given gene. Its fast running time and its 

capacity to be ported into Genie, shows that it can easily be integrated in a whole 

genome annotation system. The accuracy of the program is substantially better than 
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similar methods and at least as good as content-based methods that require information 

from larger genomic regions. 

When tested in the Adh region of the Drosophila genome, the stand-alone NNPP 

program gives a recognition rate of 75 percent (69/92) with a false positive rate of 1/547 

bases. When integrated into Genie, the recognition rate drops to 32.6 percent (30/92) 

with a much-improved false positive rate of 1/16,729 bases. The recognition for the 

integrated system is lower because of the constrained prediction of a transcription start 

site upstream of a potential gene. 

The second system introduced is a probabilistic model of the gene structural and 

compositional properties of Drosophila genomic DNA. The novel statistical model is a 

generalized hidden Markov model whose architecture incorporates probabilistic 

descriptions of signal sensors for start of transcription and translation and splice sites, as 

well as content sensors for exons, introns and intergenic regions. Model parameters for 

these content and signal sensors models are derived for codon preference and codon 

usage as well as the nucleotide compositions for the consensus sites for splice sites and 

start codons. These submodels are trained on a collected representative set of known 

Drosophila genes. In addition to these ab initio gene finding statistics a novel method to 

integrate EST sequence alignments through constraints is described to predict introns 

flanked by coding exons. Specifically for Drosophila the existing collection of 5' and 3' 

EST sequences is used as a constrain for the gene structure model to cluster predicted 

exons into one contiguous gene between an alignment of 5' and 3' EST sequences from 

the same cDNA clone. 

Development of the Genie computer program is described, which identifies 

complete gene structures in Drosophila. New features of the program include the use of 

alignments of EST sequences, the integration of homology information derived from 

protein sequences of other organisms, and the integrated probabilistic scoring of a gene 

parse. In addition this program allows for the easy integration of specific submodels 

such as the NNPP promoter model and predicts consistently genes on both DNA 

strands. To assess the accuracy of an ab initio gene finding program such as Genie and 

other similar systems and their usefulness for annotating the genome of Drosophila 

melanogaster an international experiment was initiated. For the experiment - known 

under the acronym GASP (Genome Annotation Assessment Project), a large, well-



  xvii 

characterized sequence contig was chosen: the Adh region in Drosophila, which has 222 

annotated genes. Computational predictions, made by the participating groups, were 

evaluated using two standards, one based on previously unreleased high quality full-

length cDNA sequences and the other derived from a set of annotations generated as 

part of an in-depth study of the region by a group of Drosophila experts. The 

Drosophila version of Genie incorporating EST alignments, GenieEST, was one of the 

best programs when tested on this standardized set of genes. Over 95 percent of the 

coding nucleotides in the region were correctly identified and Genie's gene assignments 

overlapped with 90% of the previously 222 annotated genes. In addition, twenty-six 

novel genes were predicted some of which might be false positives. Exon boundary 

assignments made by GenieEST were judged to be substantially better than other 

evaluated methods. 77 percent the cDNA confirmed exons were correctly predicted by 

Genie. In the gene assembly class, GenieEST correctly predicted nineteen out of the 43 

annotated genes. Thus one can reasonably expect that of almost 50 percent of the genes 

predicted by Genie the complete and correct protein sequence can be derived. 

Another typical application of the NNPP promoter prediction program is discussed 

where a novel potential transcription start site and an extended coding region for the 

unc-86 gene in C. elegans was predicted by NNPP. The predictions were subsequently 

verified by various experiments including the primer extension method RACE and 

cDNA library screening using selected primers. 

In general, applicability and portability of the developed methods to various other 

organisms are discussed. As the data shows, the developed analytical methods are well 

suited to use in other eukaryotic genomes, including human. 

The presented works can be regarded as one of the first intensive studies that 

applies novel gene finding and regulation technologies for the identification of complex 

genes structures and regulation in the genome of Drosophila melanogaster. 
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Chapter 1 Introduction 

Recent advances in sequencing technology are making the generation of whole 

genome sequences commonplace. Capillary sequencers speed the production of raw 

data. Changing tactics from traditional mapping and sequencing clones in series to an 

integrated simultaneous mapping and sequencing approach (whole genome shotgun) has 

significantly reduced the amount of time it takes to completely sequence a genome. 

These improvements in genomic sequencing are possible because of software advances 

that fully exploit mapped clone constraint data and directly attack the problems that 

repetitive sequences cause during sequence assembly. 

At present several very large-scale genomic sequencing projects are complete or are 

expected to complete within a few months. These initial genome sequences are from 

key model organisms in genetics and include five eukaryotes, Saccharomyces 

cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila 

melanogaster and Arabidopsis thaliana, as well as draft human sequence. In a few years 

sequencing new genomes and individuals will become routine practice. This raw data is 

not immediately useful and interpreting it places major demands on the field of 

computational biology. 

The discipline of computational biology can be described as the intersection of 

genetics, molecular biology, structural biology, molecular evolution, physics, 

mathematics, computer science and engineering. Its goal is often to use computational, 

statistical or mathematical methods to understand the relationships between sequence, 

structure, evolution, biological function, molecular behavior and genetics. Traditionally 

the focus of the field has been in the prediction of protein structures from the raw 

protein sequence, in evolutionary studies of complete genomes or individual proteins or 

protein families, in correlation studies of the global structure of genomes, in mapping 

and sequencing support technologies and statistics; more recently applications have 
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arisen in the study of mRNA expression levels and in the area of molecular genetics and 

epidemiology.  

This thesis work addresses a significant open problem in computational biology as 

well as in genomics in general - genomics defined as the science of studying complete 

genomes -, the problem of computational genome annotation. Genome annotation is a 

rapidly evolving field in genomics made possible by the large-scale generation of 

genomic sequences and driven predominantly by computational tools. The goal of the 

annotation process is to assign as much information as possible to the raw sequence of 

complete genomes with an emphasis on the location and structure of the genes. This can 

be accomplished by ab initio gene finding, that is through the application of statistical 

modeling of genomic sequence alone, or in consort with homology-based gene finding, 

in which genes from other organisms are aligned to the genomic sequence. 

This work specifically addresses two important problems, namely the identification 

of the precise exon-intron structures of genes and the recognition of regulatory 

promoters in higher eukaryotic (especially Drosophila melanogaster) genomic DNA 

sequence. The gene identification problem is a bottleneck in any genome annotation 

process because it is the foundation of any other subsequent characterization of genes. 

Localization of the beginning of transcription plays a major role in the immediate next 

step of annotation regarding the regulatory mechanism of a gene. Besides the practical 

importance of automated computer methods for annotation there is also an intrinsic 

biological interest in both problems. To find good solutions for both problems we are 

challenged to precisely study the statistical properties in the sequence, which are 

dependent on the fundamental biochemical processes of transcription, translation and 

RNA splicing. (For a schematic overview of the fundamental biological processes 

involved in transcription, splicing and translation see Figure 1-1) Our modeling allows 

us to hypothesize about the mechanical properties of these underlying processes. 
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Figure 1-1: From transcription initiation to translation (from Hartl and Jones, 
1998) 

 

The approach taken in my thesis is to develop a sophisticated neural network using 

a specialized network architecture based on the individual protein binding sites in a core 

promoter. For the gene identification problem in Drosophila, a probabilistic model of 

gene structure expressed as a generalized hidden Markov model is developed. Both 

models are then applied to the problems of transcription start site and gene structure 

identification in Drosophila melanogaster in two computer programs called NNPP 

(Neural Network for Promoter Prediction) and Genie. 

This work is an interdisciplinary approach typical of computational biology where 

the subject of the study is biological, results of biological interest are obtained and 

techniques are applied from many other fields such as stochastic models from statistics, 
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neural networks from speech recognition, dynamic programming algorithms from 

computer science and computer engineering and integration systems from information 

sciences.  

The playing field and science of this analysis is the genome of Drosophila 

melanogaster, which has been studied genetically over the last 100 years and is an 

excellent model organism for human. Traditionally, small-scale studies of isolated genes 

carried out in an individual researcher’s laboratory use a combination of computational 

and experimental methods that permit very detailed descriptions of genes and its 

features. They offer a narrow but deep view. In contrast, the best current results from 

the annotation of large eukaryotic genomes such as Drosophila provide a complete 

perspective and overview on the entire genome, albeit superficially. They offer a broad 

but shallow view. At present the annotation of large-scale sequences is a compromise, 

but ideally the aim is to have both breadth and depth in our description of the genome. 

Computational tools are strongly needed to improve the information derived from these 

genomes. 

Almost 100 years of scientific research has passed since W.E. Castle and his 

colleagues introduced Drosophila melanogaster as a model organism for biological 

studies (Kohler, 1994). From the very beginning the fruitfly has dominated research in 

genetics. In November 1999 Drosophila joined the elite group of completely sequenced 

organisms (Rubin et al., 2000). There are many reasons why a complete genome is so 

important for future research. From a practical point, it will be of great benefit to all 

scientists around the world that study particular genes. From a theoretical point, the 

finished genome will give a complete description of all the proteins in Drosophila - 

assuming all the genes are identified - and therefore be a blueprint for the entire 

organism. Studies on intergenic regions, number of genes, number of exons, structural 

organization and transposon distributions will be possible. Finally the detection of 

entirely novel protein families in invertebrates, or specific to Drosophila melanogaster, 

will be detected. 

To prepare tools for this event and to study the open problems in the analysis and 

interpretation of long genomic sequences, early on in the Drosophila genome project 

the 2.9Mb Adh genomic region was selected as a test bed (after the Adh gene, which 

codes for for the alcohol dehydrogenase protein). This region was already well 
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characterized by conventional genetic analyses. This chromosome region is defined as 

the 69 polytene chromosome bands from 34C4 to 36A2 on the chromosome arm 2L, 

which is the region between (and including) the previously known genes kuzbanian 

(kuz) and dachshund (dac). Genetic studies of the chromosome region began with the 

recovery of the Adh- deletion (Grell et al., 1968). 

In a very interdisciplinary effort involving many different laboratories and 

scientists with different skills this region was sequenced and was manually annotated 

over several years. In fall 1999, Ashburner et al. (Ashburner et al., 1999) published a 

definitive annotated sequence. Nearly 3 megabases (Mb) were sequenced from a series 

of overlapping P1 and BAC clones as a part of the Berkeley Drosophila Genome 

Project (BDGP) (Rubin et al., 1999) and the European Drosophila Genome Project 

(EDGP) (Ashburner et al., 1999). This sequence is believed to be of very high quality 

with an estimated error rate of less than 1 in 10,000 bases, based on PHRAP quality 

scores (Ewing & Green, 1998). Computational analysis in conjunction with expert 

knowledge of the sequence predicted 218 protein-coding genes, 11 tRNAs, and 17 

transposable element sequences. The gene density of protein-coding genes is one per 13 

kilobases (kb). A detailed analysis of this region can be accessed through the BDGP 

web site (http://www.fruitfly.org/publications/Adh.html) as well as in Ashburner et al. 

(1999). This region is thought to be typical and therefore a good test bed to draw 

conclusions for the entire genome. This region provided the substrate for annotation in 

this thesis. 

Besides this focused effort within the BDGP and EDGP, a more global effort has 

been initiated to assess and evaluate computational annotation methods in a global 

experiment performed on this Adh region before the annotations were published. A 

short summary in connection with the evaluation of my work is given in the thesis 

Chapter 4. 

After the sequence is finished we are faced with the problem of feature 

identification. The types of features that can be detected and described in the genomic 

sequence are the location of the protein coding genes; the structure of those genes 

(including untranslated regions and control elements in addition to the exon-intron 

structure for all possible transcripts); the probable translations of every transcript into a 

protein product; the location of the repetitive sequences and their nature, and the 
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location of the genes encoding non-coding RNAs. This is only a partial list and can 

easily be expanded. The identification of these essential elements of the genomic 

sequence is a necessary basis for annotation. 

There are two major classes of technique for the prediction of genes - ab initio 

methods and homology-based methods. In prokaryotes, and in some simple eukaryotes 

such as Saccharomyces cerevisiae, genes normally have single continuous open reading 

frames and short intergenic regions separate adjacent genes. By contrast genes in most 

eukaryotes may be very complex, with many exons and with introns that may be ten's of 

kilobases in length. Eukaryotes also tend to have more complex non-coding 5' and 3' 

exons and alternatively spliced products. In addition, complex relationships between 

genes may be quite frequent, e.g. genes that are contained within the introns of other 

genes and adjacent series of very related genes. The consequence is that any ab initio 

method must combine the prediction of gene components - exons, introns, splice sites 

etc. - with a model of how these components may be assembled into a gene. 

This work here presents a combination approach that integrates ab initio statistics 

and second hand information from mRNA and homologous sequences. The promoter 

localization approach is mostly ab initio but the integrated model into the gene finding 

system puts the ab initio model in context with cDNA alignments in the gene finding 

system. 

Identification as described in this work leads to the third major problem - the 

characterization of genes. This characterization must be done in several ways: in terms 

of the relationships between the sequences of the elements and other sequences (both 

within the genome being annotated and with other genomes), in terms of the structure of 

the elements (e.g. the protein domains of predicted proteins), and in terms of the 

predicted function of the elements (e.g. what inferences can be drawn concerning the 

biological function of a predicted protein). Functional characterization of genes has not 

been the focus of this work and therefore I refer to extensive literature in this field. 
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Chapter 2 Promoter prediction using 

time-delay neural networks (NNPP) 

In this chapter, an introduction to the transcriprediction using time-delay neural 

networption initiation process and a short historical review of existing methods for 

modeling this biological process is given (Section 2.1). This is followed by a description 

of the existing promoter data sets (Section 2.2) and their computer representation 

(Section 2.3) during neural network training. Section 2.4 introduces neural networks 

which is followed in Section 2.5 by a detailed description of the time-delay architecture 

and algorithm used in this work. Section 2.6 summarizes the implementation of the final 

computer program NNPP. 

2.1 Background 

One of the challenges in the field of computational biology and especially in the 

area of computational DNA sequence analysis is the automatic detection of promoter 

sites. Promoter sites typically have a complex structure consisting of multiple functional 

binding sites for proteins involved in the transcription initiation process. Therefore, I 

have focused in this work on detection of the core-promoter region, a sequence region 

spanning up to 50-60 basepairs upstream and 10-15 basepairs downstream of the 

transcription start site (TSS). This is a subset of the promoter region which spans 300 

basepairs upstream and 50 downstream of the TSS. The primary goal was to build an 

automatic computer program to localize the TSS in a genomic DNA sequence as 

precisely as possible. This program has three equally important applications: 

1. In genome-wide annotation using gene finding programs such as Genie, the 

automated partitioning of exons among several genes is very difficult. 
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Successful promoter recognition promises to correctly identify the beginnings 

of genes, thereby enabling a major advance in multi-gene recognition; 

2. Knowledge of the TSS facilitates locating the correct initiation codon, resulting 

in better coding gene prediction; 

3. Applying automated TSS localization in conjunction with cDNA alignments to 

genomic DNA can categorize a cDNA sequence as "full-length" if its 5' 

sequence end localizes close to a predicted TSS. This is very important, because 

biologically confirming full-length cDNAs is a very difficult and labor intensive 

task; 

Better TSS recognition will also lead to a better understanding of the structure and 

mechanisms of regulatory elements and the entire gene regulation process. Precise TSS 

annotation will narrow the search space for regulatory elements such as cis-regulated 

binding sites. With the recent flood of gene expression data, especially from DNA 

microarray experiments, understanding regulation of transcription and identification of 

TSS's will become more and more important. 

2.1.1 Eukaryotic transcription initiation 

Transcription is initiated by specific interactions between several transcription 

factors, RNA polymerase II, and the DNA sequence in the promoter region. These 

biochemical processes are currently the focus of intense investigation. Recent progress 

is reviewed in (Burley & Roeder, 1996; Kornberg, 1999; Pugh, 1996; Pugh & Tjian, 

1992; Roeder, 1996; Yokomori et al., 1998). 

Figure 2-1: Eukaryotic RNA polymerase II transcription machinery (from the 
laboratory of B.F. Pugh, 2000) 
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Experimental and theoretical studies of eukaryotic promoter regions - most of them 

performed in Drosophila melanogaster - have shown that promoters have a complex 

sequence structure reflecting the complicated transcription initiation process (see Figure 

2-1 for a schematic view). A so-called pre-initiation complex (PIC) recognizes the core 

promoter and initiates transcription. The PIC includes the general transcription factors 

(GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH and RNA Polymerase II. Each 

of these factors may comprise multiple protein complexes. TFIID, the most well-known 

and well-studied complex, consists of the TATA-binding protein (TBP) and several 

TBP-associated factors (TAFs). Very recently, the three dimensional structure of the 

binding complex around the human multisubunit TFIID has been obtained by electron 

microscopy and image analysis (Andel et al., 1999). This work showed that TFIID 

forms a TFIID-IIA-IIB complex to assemble the initiation complex at a eukaryotic core 

promoter. TBP, the DNA binding protein in this complex, binds site-specifically to the 

so-called TATA box. This TATA box, reviewed in (Breathnach & Chambon, 1981; 

Bucher, 1990; Conaway & Conaway, 1993; Penotti, 1990; Pugh & Tjian, 1992)) is the 

most conserved sequence motif in the core promoter region. It is located 15-25 bases 

upstream of the TSS in metazoans. Spanning the TSS, including the cap site, is the so-

called “initiator” (Inr) (O'Shea-Greenfield & Smale, 1992; Smale & Baltimore, 1989). It 

is a much less well-conserved sequence and is therefore a much weaker signal than the 

TATA box. 

Other statistically significant motifs in the eukaryotic core promoter that are not 

present in vertebrates are the GC box (Bucher, 1990; Lisowsky et al., 1999) and the 

CAAT box (Bucher, 1990; Bucher & Trifonov, 1988). These sites occur mostly outside 

the core region, but the rules governing the exact location are not well understood. In all 

conserved core promoters the relative positions of the elements and the TSS are highly 

variable and some elements may be entirely absent (for a review on TATA-less 

promoters see (Smale, 1997; Wiley et al., 1992)). For further details on the biological 

process see Fickett and Hatzigeorgiou (1997) and references therein. 

2.1.2 Computational promoter prediction in prokaryotes 

The first in silico promoter studies concentrated on prokaryotic promoters, which 

have less complex structures than their eukaryotic counterparts. Hawley and McClure 

(1983) pioneered systematic computational analysis of E.coli promoters. They studied 
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168 promoter regions and established a consensus sequence for prokaryotic promoters. 

Harley and Reynolds (1987) extended this work by using Hawley and McClure's early 

work to identify 263 additional E.coli promoters. Nakata et al. (1988) then used this 

compilation of promoters and applied the “perceptron” algorithm (Minsky & Papert, 

1969) to build a minimal neural network consisting of only one input layer and one 

output layer. This work can be seen as the first application of discriminative training to 

the problem of promoter recognition. Demeler and Zhou (1991) extended Nakata's work 

by formally introducing a multi-layer neural network architecture to the problem of 

DNA motif detection and showed its strong classification power using E.coli promoters. 

Demeler and Zhou's neural networks were trained using the backpropagation algorithm. 

O'Neill (1991; 1992) extended the neural network approach by pioneering the 

application of trained neural networks to scanning long, contiguous genomic sequence. 

O'Neill was also the first to explicitly deal with the variation in spacing of the promoter 

binding sites (-35 and -10 box in prokaryotes) by modeling and training different neural 

networks for different spacing classes. All these early prediction methods were then 

summarized and assessed by Horton and Kanehisa (1992), who obtained a stronger 

classification with neural networks than with conventional statistical methods. These 

early studies in prokaryotes suggested that both sequence specificity at the binding sites 

and distances between sites play a key role in the initiation process. A more recent 

computational study of prokaryotic promoters by Pedersen et al. (1995) showed the 

ability of computational models to identify novel sequence motifs and to find new 

signals that are regularly spaced along the promoter region. Pedersen et al. show 

evidence that the spacing of weaker signals corresponds to the helical periodicity of 

DNA. 

2.1.3 Computational promoter prediction in eukaryotes 

One of the first statistical studies of RNA Polymerase II promoter regions in 

eukaryotes was performed by Bucher (1990; 1986), who analyzed functional promoter 

sites from different eukaryotes and built statistical weight matrices for each individual 

element, such as the TATA box, Inr site, CAAT box and the GC box. The weight 

matrices were based on counts of a specific nucleotide at a fixed position. Penotti 

(1990) has extended this work, using human promoter sequences from the EMBL 

primate database. He showed statistically significant differences in the human derived 

TATA box weight matrices of Bucher’s vertebrate- and virus-derived collection. 
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Penotti’s “information content measure” showed significant sequence signals for the Inr 

site for the human sequences.  

Matis et al. (1995) computed sequence weight matrices for a large collection of 

unrelated TATA box containing promoters. In addition to the sequence profiles, they 

calculated and analyzed distance distributions between various functional elements. 

They combined the results of the statistical studies into a “backpropagation feed-

forward” neural network system (defined below) (Rumelhart et al., 1986b), which 

assigns scores to potential promoter regions. The results from the neural network were 

then integrated into the gene finding system GRAIL2 (Uberbacher & Mural, 1991) to 

reduce the number of false positives. 

Prestridge (1995) developed a computer program, PROMOTER SCAN, which 

utilizes promoter recognition profiles derived from a transcription factor database such 

as TRANSFAC (Wingender et al., 2000; Wingender et al., 1996). For the final 

prediction, the promoter recognition profile is combined with the Bucher TATA box 

weight matrix (1990). This has been the state-of-the-art program. 

The “general data study” by Larsen et al. (1995) revealed an additional CT- signal 

positioned on average seven nucleotides downstream from the TSS for which no 

binding factor is yet known. This study used neural networks to derive new signals. 

In 1997, Fickett and Hatzigeorgiou (1997) published an excellent overview of the 

status of eukaryotic promoter recognition algorithms. Besides giving a great 

introduction and overview of the biological process, they compared various programs, 

including an early version of the following TDNN algorithm, on a standardized data set. 

They found recognition rates on the order of 13%-54% of known promoters, and false 

positives on the order of one per kilobase (NNPP 's results in this review are discussed 

below). Fickett and Hatzigeorgiou concluded that the problem of eukaryotic promoter 

prediction is complex and far from solved. 

Following the Fickett review, interest in this field shifted from general TSS 

prediction to tissue specific promoter prediction (Frech et al., 1998; Klingenhoff et al., 

1999; Wasserman & Fickett, 1998). These models have much lower false positive 

recognition rates but they do not address the problem of genomic promoter recognition. 
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Recent work on general promoter prediction was presented by Ohler et al. (Ohler et 

al., 1999) who developed a novel content-based approach based on interpolated Markov 

chains, which they have later extended to stochastic segment models (Ohler et al., 

2000). This method distinguishes promoter sites from coding and non-coding regions. 

The approach is very promising because it also allows the detailed study of significant 

binding site patterns in the specific submodels of the system. Ohler et al. trained their 

program on Drosophila data as well, and results were reported in the paper by Reese et 

al. (2000).  

All methods developed to date have been plagued by inconsistent performance and 

inability to predict the exact position of TSS's. Given the nature of genomic sequence in 

higher organisms such as Drosophila and human, with large introns and intergenic 

regions a very specific algorithm with the ability to precisely predict the position of the 

TSS is needed. 

2.2 Core promoter data sets 

We selected two representative data sets, one from the Eukaryotic Promoter 

Database, EPD (Cavin Périer et al., 2000), hereafter called the “promoter set”, and one 

from Genbank, hereafter called the “gene set” (both datasets can be found in (Reese & 

Ohler, 1999)). 

The promoter set consists of 429 unrelated vertebrate promoter regions (-350 to 

+50) with a sequence identity between any two sequences of less than 25% (Appendix 

B). The set consists of 37.4% human, 23.4% mouse and 12.1% chicken (gallus) 

sequences. The remaining 27.1% are from various other eukaryotes including 

Drosophila and eukaryotic viruses. 

The gene set is a collection of non-redundant human genes representing typical 

coding regions in metazoans such as Drosophila and human. This data set was also used 

in the training of Genie (see Chapter 4 and Appendix C). 

The combined data were split into a training set and a test set in the following way. 

The training set consists of 3,300 sequences containing 51 bases each. Of these, 300 

sequences contain randomly selected promoter regions from the promoter set, while the 

other 3,000 contain sections of coding sequence from the gene set. The 300 promoter 
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sequences contain the regions from -40 to +11, where +1 is the TSS as annotated in 

EPD. The test set consists of 1,129 sequences of 51 bases. 129 of these include 

eukaryotic promoters and 1,000 contain regions of random coding sequence. All 

reported results are 4-fold cross-validated. 

We report as true positives those results, where given a cutoff threshold, the 

network predicts a promoter in a sequence that contains a promoter. False positives are 

those results where given the same threshold, the network predicts a promoter in a 

sequence representing random coding sequence. For example, a false positive rate of 

3.8% for the test set would indicate that for a given threshold on the output unit, the 

network predicts 38 promoters in the 1,000 sequences containing no promoters. 

2.3 Input data representation 

It has been shown in earlier applications of neural networks to nucleic acid 

sequence analysis (Brunak et al., 1991; Demeler & Zhou, 1991; Farber et al., 1992; 

O'Neill, 1992; Qian & Sejnowski, 1988) that the orthonormal coarse code of fourth 

dimension (A: 1 0 0 0; C: 0 1 0 0; G: 0 0 1 0; T: 0 0 0 1) gives the best results. This data 

representation uses a unitary coding matrix with identical Hamming distance between 

each pair of vectors. This guarantees that there is no correlation between the coding 

vectors of different nucleotides that could bias the learning procedure. True promoters 

in the training and test set are coded as “1”, and negative examples, which means non-

promoters, are coded as “0” in the output of the neural network. 

2.4 Neural networks 

Neural networks are machine-learning techniques that were developed mainly in 

the field of signal and speech recognition. The early “neural networks” were inspired by 

concepts from neuroscience. The first to introduce the notion of a simple model of a 

neuron as a binary threshold unit were McCulloch and Pitts (1943). Specifically, the 

model neuron computes a weighted sum of its inputs from other units, and outputs a one 

or a zero according to whether this sum is above or below a certain threshold. In the 

early sixties the group of Frank Rosenblatt introduced the first form of a connected 

network, the so-called perceptron. Rosenblatt (1962) proved the convergence of a 

learning algorithm for the simplest class of perceptron, a two layer neural network. 

Minsky and Papert pointed out the severe limitations of the perceptron in their book 
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Perceptron (Minsky & Papert, 1969). In particular, they provided a proof that a single 

perceptron could only solve linearly separable problems, a very minor and uninteresting 

class of problems. The XOR is the best-known example for such a non-linearly 

separable problem. Interest in neural networks immediately declined dramatically. 

Werbos (1974) made a very significant contribution in the early seventies. He 

described the backpropagation algorithm, a method to adjust the weights connecting 

units in successive layers of multi-layer perceptrons. The significance of 

backpropagation was overlooked for a whole decade until Rumelhart, Hinton and 

Williams (1986a; 1986b) independently rediscovered it. The name perceptron is no 

longer used and multi-layer networks are now called neural networks. 

Hertz et al. (1991) give an excellent introduction and overview of the theory of 

neural computation. For an overview of applications in computational biology, for 

example, see my earlier work (Reese, 1994). 

2.5 Time-delay neural networks 

For promoter modeling, a special neural network is chosen, the time-delay neural 

network (TDNN) architecture developed by Waibel et al. (1989). This architecture was 

originally designed for processing speech sequence patterns in time series with local 

time shifts. The usual way of transforming sequence patterns into input activity patterns 

is the extraction of a subsequence using a fixed window. This window is shifted over all 

positions of the sequence and the subsequences are translated into input activities. The 

network produces an output activity or score for each input subsequence. 

The following two promoter specific features have to be learned: 

• The network has to recognize subsequences that may occur at non-fixed positions in 

the input window. Therefore the network has to learn that the subsequence is a 

feature independent of shifts in its position. 

• The network has to recognize features even when those features appear at different 

relative positions. This situation arises in cases where different subsequences occur 

in the input window with different relative distances. This happens very frequently 

in genomic sequences when one or more elements (nucleotides) are inserted or 

deleted in a given promoter.  
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The TDNN architecture addresses these problems by imposing certain restrictions 

on the network topology and by the way in which weights are updated. Hidden units are 

connected to a limited number of input units that represent a consecutive pattern in the 

input window. These hidden units have a receptive field, that is, they are only sensitive 

to a part of the input window. The important restriction is that the same receptive field 

has to be present at each position in the input exactly once. If the input window 

contains, for example, ten positions and a receptive field covers a subsequence of three 

positions, there must be eight hidden units with the same receptive field. Since the 

corresponding weights in all copies of a receptive field are forced to have the same 

values, these hidden units are said to have linked receptive fields. In neural network 

terminology this is also known as weight sharing. Each hidden unit is called a feature 

unit because it will recognize a certain feature in the input window irrespective of its 

relative position. During learning, the partial derivatives of corresponding weights in 

linked receptive fields are calculated separately since these hidden units with their 

receptive fields at different positions in the input window get different activation. To 

adapt a receptive field, the weight update is averaged over all copies of a weight. This 

average update is then applied to all copies of that weight. In this way, it is ensured that 

the copies of a receptive field remain identical for a given feature. In the basic TDNN 

architecture the hidden layers (feature units) are connected to the output layer in a 

standard feed-forward way. Training is performed using a modified backpropagation 

algorithm. 

There are several successful applications of TDNNs in speech recognition (Waibel 

et al., 1989) and the recognition of handwritten characters (Lang & Waibel, 1990). 

These references include a detailed description of the time-delay architecture. 

2.6 Implementation of the core-promoter time-delay neural network model 

(NNPP) 

Using the time-delay architecture described in section 2.5, two distinct neural 

networks, one for the TATA box and one for the Inr, were trained. We selected an input 

window of 30 bp (-40 to -10) for the TATA box neural network and a window of 25 bp 

(-14 to +11) for the Inr network. The window sizes were selected so that the consensus 

sequences for both binding sites are included. The two signals occur at varying 

distances relative to the TSS, which is used as the alignment point for the promoter 
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sequences in the EPD database. This implies that we do not wish to utilize the fixed 

alignment in EPD but instead use the time-delay architecture that allows the alignment 

to vary and appropriate modeling of the two main signals in the core promoter region. 

The two time-delay neural networks were trained independently. It was 

experimentally determined that a receptive field size of 15 bp performed the best. For 

the TATA network, this leads to a total of 120 input units (30 bp) and 60 weights (4 x 

15) for each unit in the hidden layer. The Inr network has 100 input units (25 bp) and 

also 60 weights (4 x 15) for each unit in the hidden layer. 

The weights of the receptive fields for both of the two networks were initialized 

using the weight matrices from the literature to “push” them to recognize particular 

signals. The TATA box weight matrix was taken from Bucher (1990), and the Inr 

weight matrix from Penotti (1990). These initializations were ideal to train the TDNNs 

to recognize the appropriate signal in the sequence (i.e. the TATA box time-delay 

network was forced to train only on the TATA box pattern at approximately -20 bp). 

The results of both networks can be seen in Table 3-1 and are discussed below. 

2.6.1 Incorporation of feature detector networks into the final TDNN 

To combine the individual feature detector neural networks for TATA and Inr, we 

use a two-layer time-delay neural network. The input to the final TDNN consists of 51 

bp, spanning the transcription start site from position -40 to +11 and including the 

TATA box and the Inr. The hidden layers from the two previously trained single-feature 

time-delay neural networks are copied into the combined TDNN and training is carried 

out. The resulting neural network maps high order correlation between the different 

features and their relative distance into a complex weight matrix. A snapshot of the two-

layer (TATA and initiator) trained TDNN is shown in Figure 2-2. The weights from the 

hidden layers can be interpreted as the preferred position for an individual element in 

the input window. 

All neural networks were integrated and tested using the Stuttgart Neural Network 

Simulator Software toolkit (Zell & al., 1999). The networks were then implemented in 

the Neural Network for Promoter Prediction (NNPP) program. This program is publicly 

accessible through a World Wide Web server 

(http://www.fruitfly.org/seq_tools/promoter.html). It has also been distributed as a 
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stand-alone program on request and is integrated into the Genotator program (Harris, 

1997) as a part of the back-end analysis package. 

 

Figure 2-2: The trained two-layer time-delay neural network. The small squared 
boxes symbolize the neurons. The input layer is on top with the window reading in 
the DNA sequence. The receptive fields indicated with a circle grouping 
connections from the input layer to the two hidden layers (TATA and Inr) show 
the structure of the time-delay connections. Both hidden layers connect to the 
single output neuron on the bottom. For clarity, only strong weights are shown. 
For example, the only significant weights shown from the TATA-layer to the 
output unit are the ones that localize the position of the TATA box at the beginning 
of the input window (below CCACCGG). The TATA box is boxed. This test 
sequence of CCACC….GGACG received a score of 0.823 from NNPP. 
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Chapter 3 Results of NNPP 

This chapter covers the testing of the NNPP program, addresses some of the 

strength and weaknesses, and gives some examples of its application. The first section 

(3.1) reports the accuracy of NNPP on an assembled collection of eukaryotic promoters. 

Section 3.2 describes the adaptation of NNPP for contiguous genomic sequence. 

Sections 3.3 - 3.5 describe the application and give results of NNPP to identify TSS's in 

various long genomic sequence datasets giving examples from human DNA, from a 

mixture collection of experimentally verified eukaryotic promoters, published in a 

comparison in 1997 and, finally, from the Adh region in Drosophila melanogaster. 

3.1 Accuracy of NNPP on a selected promoter dataset 

Table 3-1 shows the prediction results for the two single feature time-delay neural 

networks, the TATA box feature detector (column 2), the Inr feature detector (column 

3) and the two-layer TDNN, which incorporates both (column 4 and 5). The results are 

averaged over four cross-validated test sets produced from the complete dataset of 429 

promoters. The correlation coefficient is calculated as defined originally by Matthews 

(1975) and later adapted to the problem of gene finding evaluation by Burset and Guigó 

(1996) as: 

( ) ( )
( ) ( ) ( ) ( )FNTNFPTPFPTNFNTP

FPFNTNTPCC
+×+×+×+

×−×=  
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Figure 3-1 shows the false positive (FP) and correct positive (CP) prediction results 

versus the threshold applied to the neural network score. The curves for the individual 

test sets are almost identical indicating that the sets are independent.  

Table 3-1: NNPP Prediction performance on the 4-fold cross-validated data set. 
False positive rates and correlation coefficients are averaged over the 4-cross 
validated sets. 

 

False Positive (FP) rates and Correlation Coefficients (CC) 

% Promoters 
recognized 

TATA box 
FP-rate (CC) 

Initiator FP-
rate (CC) 

Combined 2-
layer TDNN 

(CC) 

Threshold (0-
1) for 

combined 
TDNN 

Multi-layer 
Perceptron 

FP-rate (CC)

10 0.2% (0.36) 0.8% (0.28) 0.0% (0.38) 0.99 0.2% (0.35) 

20 0.3% (0.45) 2.7% (0.27) 0.1% (0.38) 0.97 0.3% (0.45) 

30 0.5% (0.52) 7.0% (0.28) 0.3% (0.50) 0.92 0.8% (0.48) 

40 0.9% (0.56) 10.6% (0.26) 0.4% (0.60) 0.85 1.9% (0.50) 

50 1.3% (0.62) 18.7% (0.25) 1.0% (0.65) 0.70 3.7% (0.51) 

60 3.8% (0.60) 33.0% (0.21) 3.1% (0.61) 0.38 9.9% (0.44) 

70 7.2% (0.57) 45.5% (0.18) 5.3% (0.58) 0.20 16.1% (0.40) 

80 22.3% (0.39) 60.5% (0.17) 12.5% (0.52) 0.12 45.5% (0.23) 
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Figure 3-1: Results of the 4-cross validated test sets. Each point on the curves gives 
the prediction accuracy for a fixed threshold. The four upper curves are the 
correct positive prediction rates and the lower curves, the corresponding false 
positive prediction rates for all four test sets. 
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As can be seen from Table 3-1, the performance of the feature detecting networks 

used in isolation is rather poor. The TATA box network has the better performance of 

the two, since over 60% of the vertebrate promoters contain a TATA box. The 

predictive power of the initiator network is weaker because there is no real consensus 

sequence for vertebrate Inrs. The TATA box network recognizes on average 64 (60%) 

of the 107 promoter sequences in each test set (4-fold cross-validated) with an average 

of 38 (3.8%) false positive predictions. If we adjust the threshold so that on average 75 

(70%) of the promoters are predicted correctly, there are 72 (7.2%) false positive 

predictions. The Inr neural network can only detect 11 (10%) of the promoters, with a 

false positive rate of 0.8%. The combination of both neural networks increases the 

prediction rate. If on average in the 4 cross-validated sets 54 (50%) promoters are 

correctly predicted, the false positive rate drops down to 1.0% (ten coding DNA regions 

predicted as promoters; correlation coefficient of 0.65), but that is similar to the TAT A-

only results. Even if 75 (70%) promoters are correctly predicted, the average number of 

false predictions is only 53 (versus 72 for TATA alone). At a threshold of 0.12, 80% of 

the promoters predicted, the number of false positive predictions goes up to 125 
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(12.5%). 21 (19.6%) promoter sites on average in the test sets cannot be predicted at all 

using this 2-layer neural network. 

For comparison, the results for a “standard” feed-forward backpropagation neural 

network with one hidden layer trained on the same data sets are shown in the last 

column of Table 3-1. The number of hidden units and the number of training cycles 

were optimized exactly the same way as for the time-delay neural network. The results 

show the superiority of the two-layer TDNN. At a threshold that gives 64 (60%) correct 

predictions, the number of false positive predictions is more than three times higher for 

the standard network (99 false predictions) than for the 2-layer TDNN (31 false 

predictions). This shows that reducing the parameter space from 3,091 adjustable 

weights in the standard network to 169 in the TDNN, improves the prediction accuracy 

on a limited training data set (419 promoter sequences). 

Figure 3-2 shows that the correlation coefficient performance for the 2-layer neural 

network on all four data sets is dependent on the threshold. The prediction accuracy 

expressed in the correlation coefficient (CC) gets the highest value, on average, with a 

threshold of 0.5 and is fairly stable in the range of thresholds 0.2 - 0.9. 

Figure 3-2: Correlation coefficient results for the 4-cross validated test sets. 
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3.2 Application of NNPP to long, contiguous genomic DNA 

To apply the 2-layer time-delay neural network to contiguous genomic sequence, a 

window of 51 basepairs is shifted over the sequence base by base. In this way, a score is 

computed for every position in the sequence. These individual scores are subsequently 

smoothed by a simple but efficient function, which selects the position of the highest 

score in a window of 10 neighboring positions as the final prediction. The smoothing 

function is implemented as a post-processing procedure and is part of the final NNPP. 

3.3 Accuracy of NNPP in human DNA 

In Figure 3-3, the output of the smoothing function is plotted for the 2-layer TDNN 

neural network output for the genomic sequence of a human tissue factor gene 

(GenBank accession HUMTFPB). In this sequence, NNPP finds the annotated promoter 

at position 799 with a score of 0.997. With the threshold cut-off used in Figure 3-3 of 

0.96, 8 false positives are predicted in the 13,865 bases sequence (forward strand only). 

This corresponds to a false positive recognition rate of approximately six in 10,000 

bases or 0.0577% (forward strand only!). The figure also illustrates the usefulness of the 

scores. If one had chosen a threshold of 0.99, one would still have found the actual 

promoter and predicted only two false positives sites (one of them, the second highest 

scoring at 12,500 in Figure 3-3 might even be a real promoter belonging to the next 

gene). Another human test sequence is the well-studied gene cluster of growth factors 

(GenBank accession: HUMGHCSA). In Figure 3-4 the 66,495 bases sequence shows 

twenty false predicted sites (three in 10,000 basepairs or 0.0301% (forward strand 

only)). With a threshold of 0.99, all five known promoters are predicted and only one 

false positive site in the 5’ untranslated region of the first gene is over-predicted. These 

two examples show the variation of the false positive prediction rate in different human 

genomic sequence regions. 
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Figure 3-3: NNPP predicted positions for the TSS for the human tissue gene 
HUMTFPB (13,865 bp). The known coding region including introns (not shown) is 
indicated as a rectangular box in the top region of the graphs. 
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Figure 3-4: NNPP predicted positions for the TSS for the human growth factor 
region HUMGHCSA (66,495 bp). Known genes are indicated as rectangular boxes 
in the top region of the graph. 
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Table 3-2 shows NNPP results on two additional selected human genomic sequence 

the human beta globin gene (GenBank accession: HUMHBB) and the human herpes 

simplex virus region (GenBank accession: HEHSV1SU). While the false positive rate 

for the human beta globin locus of 1.2/10,000 bases (threshold of 0.99) is similar to the 

examples in Figure 3-3 and Figure 3-4, the human herpes simplex virus reveals many 

more false positives (almost eight in 10,000 at a threshold of 0.99). This might have to 

do with the specific gene content in this region or with previously unannotated genes 

and their corresponding promoters. Table 3-2 also shows NNPP results in comparison to 

two other existing promoter prediction programs PromoterScan (Prestridge, 1995) and 

the promoter subprogram of GRAIL2 (Matis et al., 1995). We adjusted NNPP's 

thresholds so that the false positive rates are comparable to that of the other programs. 

While both programs seem to predict fewer false positive sites both also miss many 

known promoter sites. The lower false positive prediction rates are not too surprising, 

because PromoterScan uses a long promoter region for scoring and NNPP uses only 51 

basepairs. Matis' promoter recognition method, which is integrated into the GRAIL2 

gene finding system, also reduces the false positive rate. 
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Table 3-2: NNPP results in human DNA. Results obtained with the genomic 
sequence of the human herpes simplex virus (HEHSV1SU: nine genes and eleven 
TSS's (two genes with two alternative TSS's)) the human tissue gene (HUMTFPB: 
one gene and one TSS), the human beta globin region (HUMHBB: six genes and 
seven TSS's (one gene with two alternative TSS's)), and the human growth factor 
region (HUMGHCSA: five genes and five TSS's) using NNPP, PromoterScan 
version 1.5 and Grail 2 version 1.3b. We show two result sets (threshold 0.8 and 
0.99) for our method. For the two other methods the default settings were used. 

 

 NNPP (t=0.8) NNPP (t=0.99) PromoterScan GRAIL2 

 CP FP CP FP CP FP CP FP 

HEHSV1SU  

Herpes simplex virus

(12,979 bp) 

10/11 0.39% 7/11 0.077% 3/11 0.054% 2/11 0.015% 

HUMTFPB 

Human tissue gene 

(13,865 bp) 

1/1 0.19% 1/1 0.014% 1/1 0.0072% 1/1 0.0072%

HUMHBB 

Human beta globin 
gene (73,308 bp) 

7/7 0.13% 1/7 0.012% 2/7 0.0082% 2/7 0.0082%

HUMGHCSA 

Human growth factor 
cluster 

(66,495 bp) 

5/5 0.12% 5/5 0.0015% 4/5 0.014% 5/5 0.011% 

 
 

3.4 Accuracy of NNPP in a eukaryotic promoter recognition assessment project 

In 1997, Fickett and Hatzigeorgiou (1997) published a first overview of the status 

of eukaryotic promoter recognition algorithms. They compared the computer methods 

“Audic” (Audic & Claverie, 1997), “Autogene“ (Kondrakhin et al., 1995), 

“GeneID/Promoter1.0” (an older version of Promoter2.0 (Knudsen, 1999)), “NNPP” 

(through the web interface), “PromFind” (Hutchinson, 1996), “PromoterScan” 

(Prestridge, 1995), “TATA” (derived from (Bucher, 1990)), “TSSG” and “TSSW” 

(Solovyev & Salamov, 1997). 
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All eight programs were tested on eighteen published mammalian sequences 

containing twenty-four promoters (see Table 1 in (Fickett & Hatzigeorgiou, 1997) for a 

list) in a total of 33,120 basepairs of genomic DNA. They found recognition rates, 

expressed as sensitivity, on the order of 13%-54% of the true promoters and false 

positive rates on the order of 1/460 to 1/5,520 (see Table 3-3 from the original Table 2 

in the Fickett and Hatzigeorgiou publication (1997)).  

Table 3-3: Comparison of performance accuracies. Taken from (Fickett & 
Hatzigeorgiou, 1997). Program Accuracy. Overall accuracy of the programs tested. 
For each program the sensitivity (both as the number and percentage of promoters 
correctly detected) and specificity (as number of false positives and number of 
basepairs per false positive) is given. 

 Audic Auto 
gene 

Gene 
ID 

NNPP P'Find P'Scan TATA TSSG TSSW 

Sensiti
vity 

5/24 
24% 

7/24 
29% 

10/24 
42% 

13/24 
54% 

7/27 
29% 

3/24 
13% 

6/24 
25% 

7/24 
25% 

10/24 
42% 

Specifi
city 

33 FP 
1/1004 

bp 

51 FP 
1/649 

bp 

51 FP 
1/649 

bp 

72 FP 
1/460 

bp 

29 FP 
1/1142 

bp 

6 FP 
1/5520 

bp 

47 FP 
1/705 

bp 

25 FP 
1/1325 

bp 

42 FP 
1/789 

bp 
 

In addition to Table 3-3 the accuracy of the various programs are plotted in Figure 

3-5 (also taken from the original Figure 1 in the Fickett and Hatzigeorgiou (1997) 

publication). This figure combines the accuracy measures of sensitivity and specificity 

from Table 3-3. The accuracies of the programs whose results are furthest away from 

the plotted random prediction axis are the highest. As one can see, NNPP's (marked in 

Figure 3-3) is one of the best performers. The figure also shows that NNPP has a high 

sensitivity but a very low specificity (see Table 3-3 for exact scores). This is due to the 

small window on which the prediction is based. The NNPP approach falls into the 

category of  "search by signal" approaches (see Haussler (1998)) and has the highest 

coverage of real TSS's (54%). Most of the other programs, for example Audic (Audic & 

Claverie, 1997), PromFind (Hutchinson, 1996) and TSSG/TSSW (Solovyev & 

Salamov, 1997), fall in the "search by content" category, because they take into account 

general DNA statistics such as coding potential, nucleotide frequencies, such as CpG 

islands, AT-richness and others. PromoterScan (Prestridge, 1995) is a "search by signal" 

method that uses heuristics to combine several weight matrix hits. All these programs 

make fewer false positive predictions but miss more true TSS's. 
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Figure 3-5: Taken from (Fickett & Hatzigeorgiou, 1997). Each point plotted 
represents the accuracy of one program, with the abscissa being the total number 
of predictions made by the program, and the ordinate being the number of correct 
predictions. For comparison, the line y = 0.11x is plotted. 0.11 is the fraction of all 
bases in the test set where a prediction would be counted as correct, so that points 
on the line would reflect the accuracy, on average, of random predictions. 
 

 

To use content information for a better prediction in section 4.4.3 below I describe 

the integration of NNPP into the Genie gene finding system. This system then integrates 

"search by signal" and "search by content" methods into a recently defined third 

category of promoter prediction programs called "promoter prediction through gene 

finding" (Reese et al., 2000). 

3.5 Application of NNPP in Drosophila melanogaster: The Adh region 

To test the accuracy of NNPP in Drosophila melanogaster, NNPP was applied to 

the 2.9 Mb genomic sequence of the Adh region (Ashburner et al., 1999). As part of the 

GASP genome annotation assessment experiment (Reese et al., 1999), Uwe Ohler 

prepared a set of annotations of very likely TSS's for the entire Adh region. He describes 

in Reese et al. (2000) that prior to the experiment almost no experimentally confirmed 

annotation of a TSS existed in the Adh region. To extend the very few experimentally 

confirmed TSS's, he used gene annotations from Ashburner et al. and specifically the 5' 

NNPP 
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UTR alignments of the existing full-length cDNA sequences and 5' EST clusters to 

obtain the best approximation for each TSS. Because 5' UTRs of Drosophila genes can 

extend up to several kilobases upstream of the ATG, this was not an easy task. A careful 

analysis resulted in high quality full-length cDNA alignments for 92 genes out of the 

original 222 gene annotations. Full-length cDNA sequences were taken from recent 

cDNA sequences, described in Reese et al. as the std1 set, as well as previously known 

cDNA sequences from GenBank (for more details see (Reese et al., 2000)). This recent 

experiment represents the first assessment of promoter prediction techniques for a 

significant number of genes in a large contiguous genomic region. 

In Table 3-4 the NNPP results are reported on this test set of genes in the Adh 

region (Ashburner et al., 1999) in comparison to CoreInspector (Scherf et al., 2000) and 

MCPromoter (Ohler et al., 1999) in the GASP study (Reese et al., 2000), excluding the 

"promoter prediction through gene finding" programs. Although NNPP is far from 

accurate, this test shows results similar to those in the 1997 review by Fickett and 

Hatzigeorgiou (see Table 3-3). They reported a recognition rate of 54% of the known 

promoters at a threshold of 0.8. In Adh, the same threshold identifies 69 or 75% of the 

total of 92 annotated promoters with a false positive rate of 1/547, similar to the rate of 

1/460 reported in (Fickett & Hatzigeorgiou, 1997). It has to be noted that Fickett and 

Hatzigeorgiou used both strands to calculate the false positive rate while for Adh only 

the gene strand was used. If one applies a more stringent threshold of 0.97, 35 of the 92 

promoters are still recognized with a much lower false positive rate of 1/2,416. The 

higher classification rate might be due to biased promoter selection in (Fickett & 

Hatzigeorgiou, 1997). Compared to the human sequences in Table 3-2 the false positive 

results on the Drosophila genome DNA are a little higher (t=0.99: 0.013% (human) vs. 

0.016% (Drosophila)).  
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Table 3-4: Evaluation of promoter prediction systems on the Adh region. The table 
only shows the results of the "search by signal" program (CoreInspector) and 
"search by content" programs (MCPromoter) from the experiment of Reese et al. 
(2000) and the prediction sets from NNPP with different thresholds. Only the 
identified TSS's from Adh with long cDNA alignments are shown (for a full 
explanation of the test data set, see Reese et al. (2000)). The rate of false positives is 
shown for the sequence where cDNA annotations define the region as non-
promoter. 

 System name Identified 
TSS 

Rate of false 
predictions in 
annotated Adh 

region (total 
853,180 bases) 

CoreInspector 1 (1.0%) 1/853,180 
(0.00012%) 

MCPromoter v2.0 31 
(33.6%) 

1/2,437 
(0.041%) 

From Reese et 
al., 2000 

MCPromoter v1.1 26 
(28.2%) 

1/2,633 
(0.038%) 

NNPP (t=0.99) 20 
(21.7%) 

1/6,227 
(0.016%) 

NNPP (t=0.97) 35 
(38.0%) 

1/2,416 
(0.041%) 

NNPP (t=0.92) 49 
(53.2%) 

1/1,096 
(0.091%) 

NNPP (t=0.90) 55 
(59.7%) 

1/928      
(0.108%) 

NNPP (t=0.85) 65 
(70.6%) 

1/685    
(0.146%) 

NNPP (t=0.80) 69 
(75.0%) 

1/547    
(0.183%) 

NNPP (t=0.70) 80 
(86.9%) 

1/400    
(0.250%) 

NNPP (t=0.38) 91 
(98.9%) 

1/164    
(0.610%) 

Plain NNPP 

NNPP (t=0.20) 92 
(100.0%) 

1/75    
(1.333%) 
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The statistics formulated in Fickett and Hatzigeorgiou (1997) where based on a 

window of -200 to +100 bases centered around the TSS while in the Adh GASP 

experiment a window of +500 to -50 bases for a correct prediction around the 

translation start site was used in absence of an annotated TSS. This is very generous. A 

check of the exact position of the TSS predictions using a threshold of 0.97 for NNPP 

shows that for the 35 predicted TSS's, the average distance from the predicted to the 

annotated TSS is 148.94 bases. This is surprisingly high and might be due to TSS 

annotation errors in the Adh standard set. The methods of aligning cDNAs to genomic 

DNA to identify the TSS are known to be problematic. Predictions from MCPromoter 

and NNPP (t=0.97) agree in 11 out of 35 cases but again the exact predicted positions 

do not show a strong correlation. The average distance from the predicted TSS to the 

annotated TSS for MCPromoter is 131.24, which is more precise than NNPP. 
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Chapter 4 Gene finding using a 

generalized hidden Markov model 

(Genie) 

In this chapter, the structural and compositional features of genes in genomic DNA 

are presented and a probabilistic model of gene structure is introduced. Section 4.1 

reviews the biological features of a gene and summarizes historical and current 

approaches to computational gene finding. Section 4.2 presents the data sets of known 

Drosophila genes and the genomic region, which is used for evaluating Genie, is 

introduced. In Section 4.3 the basic HMM framework for the gene model is described, 

and a description of the individual submodels used in the overall framework is given. 

Section 4.4 discusses the implementation of Genie and describes the three versions of 

Genie: Genie, GenieEST and GenieESTHOM. Finally the algorithmic integration of the 

time-delay neural network into the Genie system is presented. 

4.1 Background 

Recent advances in sequencing technology are making the generation of whole 

genome sequences commonplace. Immediately after deciphering the nucleotides of a 

genome, the process of interpretation of these raw data into useful biological 

information begins. The first features in a genome to detect and describe are the genes. 

The major class of genes is the class of protein coding genes. Traditionally, small-scale 

studies of isolated genes were carried out in an individual researcher's laboratory. They 

used a combination of computational and experimental methods that permit very 

detailed description of the gene and its features. In contrast, for complete genomes 

robust automatic methods are needed to identify the majority of the genes quickly. 
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In prokaryotes, and in some simple eukaryotes such as Saccharomyces cerevisiae, 

genes normally have single continuous open reading frames (ORFs) separated by short 

intergenic regions. In contrast genes in most eukaryotes may be very complex, with 

many exons, introns that may be ten's of kilobases in length, non-coding 5' and 3' exons 

and alternatively spliced products. In addition complex relationships between genes 

may be quite frequent, e.g. genes contained within the introns of other genes and 

adjacent series of very related genes. Therefore, methods for these higher organisms 

(including Drosophila) have to be much more complex and are much less robust and 

sensitive. A recent study in C. elegans, for example, has shown that the first path 

annotation process of genes can provide an overview of the entire genome, but that it is 

rather superficial and incomplete in describing individual genes. In this particular 

genome, the originally estimated number of total genes of approximately 19,000 had to 

be reduced to 14,000 - 15,000. This also shows the dependence of genome annotations 

on the tools used especially the gene identification systems. 

Besides giving an accurate estimate of the existing genes in a first path annotation 

phase, any improvement in the accuracy of the predicted gene structure will be of high 

value for subsequent genome analysis because error correction through biological 

experiments is very labor intensive and expensive. Complete correct predictions cannot 

be produced by the current gene finding technologies. Therefore the Drosophila Genie 

system has been evaluated extensively by participating in the international assessment 

project called the Genome Annotation Assessment Project (GASP) organized by 

members of the BDGP (Rubin & al., 1999) including myself (Reese et al., 2000). This 

experiment was a blind test and the assessment was based on the Adh region (Ashburner 

et al., 1999). This assessment will provide biologists that rely on computational 

annotations for biological studies with confidence values for the individual predictions, 

which is a necessity to understand the value and quality of any annotation of a genome.  

In this chapter, I will briefly describe the general task of identifying genes in 

genomic DNA, introduce the methodology of a generalized hidden Markov models, 

discuss the implementation of the computer system and the training on Drosophila 

genes, discuss shortly the evaluation process used at GASP to better understand the 

performance results, report on results of Genie on the Adh region (as evaluated at 

GASP) and give a short report of the application of the final Genie system to the entire 

genome of Drosophila melanogaster. 
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4.1.1 The structure of Drosophila genes 

Genes in Drosophila have a complex genomic structure. A schematic can be seen 

in Figure 4-1. In a very top down view a gene consists of exons and introns and the two 

transcription regulatory sites, the promoter and the poly-adenylation site. Promoters 

have been discussed in detail in the previous chapter and for poly-adenylation sites I 

refer to the textbook literature because they have not played a major role in the 

development of the Genie system owing to their lower statistical significance. The 

transcription machinery initiated at the TSS, transcribes the entire gene up to the poly-

adenylation site into pre-mRNA. Immediately afterwards the exons in the pre-mRNA 

are merged together through the splicing process. This splicing process of the removal 

of the introns is carried out in the cell nucleus by a complex process catalyzed by a 60S 

particle known as the spliceosome. The spliceosome is composed of five small nuclear 

RNAs (snRNAs) called U1, U2, U4, U5 and U6, and numerous other proteins (for an 

overview see (Neubauer et al., 1998)). Splice site recognition and spliceosomal 

assembly occur simultaneously according to a complex sequence of steps (for the most 

comprehensive review see (Green, 1991; Moore et al., 1993)). The consensus sequence 

for the 5' splice site (exon-intron) contains the conserved motif "GT" following the exon 

and the 3' splice site (intron-exon) contains the conserved motif "AG" preceding the 

exon. Exceptions for these conserved motifs are the so-called U2 or U12 type introns 

(Sharp & Burge, 1997) mostly found and studied in human. The 5' and 3' splicing 

signals are statistically the strongest signal for gene recognition. 

After splicing, the mRNA leaves the nucleus and gets translated at the ribosome 

into the amino acid chain. The genetic code determines the translation from the 

nucleotides into the amino acid sequence. The typical usage of an organism of a certain 

set of codons is called codon preference. It has strong statistical features and varies 

among organisms and species. The statistical preferences for a protein sequence are also 

organism specific. This is usually called codon usage. Both features are statistically 

significant and are therefore the most contributing features models in the computational 

models. The translated region starts with a methionine (M), which is coded as AUG in 

the mRNA and ATG in the genomic sequence. The end of translation is marked by stop 

codons. In Drosophila these are TAA, TTG and TTA. 
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Additional gene features such as the branch point, transcription factor binding sites, 

leader or signal peptides, enhancer sites or other regulatory sites are not modeled in 

Genie owing to the low statistical significance for a general gene model and our limited 

understanding of the underlying processes. 

Figure 4-1: Schematic gene structure. 

 

 

4.1.2 Computational gene finding 

Computational gene finding can be divided into two major classes of techniques for 

the prediction of genes - ab initio methods and homology-based methods. Given the 

complexity of eukaryotic genes described above any ab initio method must combine the 

prediction of gene components, exons, introns, splice sites etc, with the prediction of a 

model of how these components may be assembled into a gene. Homology-based 
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methods on the other hand can rely on information from biological experiments, cDNAs 

or proteins from other organisms to cope with these gene assembly difficulties.  

Computational gene finding has evolved steadily over the last 20 years and 

excellent reviews in this area have been written by Fickett (1992), Claverie (1997), 

Guigó (1997) and Burge (1998). In the most recent review, Haussler (1998) has 

categorized submodels in gene finding methods as either "signal sensors" or "content 

sensors". In broad terms signal sensor methods exploit descriptions of pertinent sites 

such as splice junctions, start and stop codons, branch points, promoters, termination of 

transcription and others to identify genes. Content sensor methods employ models that 

are based upon extended lengths of sequence such as exons and introns. 

Pioneering studies in eukaryotic gene identification (Fickett, 1982; McLachlan et 

al., 1984; Shepherd, 1981; Staden & McLachlan, 1982; Trifonov & Sussman, 1980) 

showed that statistical measures related to biases in codon preference and codon usage 

could be used to identify protein-coding regions. Since then many methods have been 

developed that show differences in coding versus non-coding genomic sequence 

including k-tuple frequencies (Claverie & Bougueleret, 1986), measures of auto-

correlation (Michel, 1986), spectral analysis using Fourier transformation (Silverman & 

Linsker, 1986) and G-notG-U periodicity statistics (Trifonov, 1987). Based on these 

statistical differences a first generation of computer programs was developed to identify 

approximate coding regions in genomic DNA sequence. The most well known programs 

are TestCode based on Fickett's work (1982) and GRAIL (Uberbacher & Mural, 1991), 

which is based on a neural network approach that integrates multiple gene features of 

content type (i.e. exons) to classify genes. Generally these first generation programs 

were able to identify the approximate location of coding regions.  

The next wave of programs addressed the need more precisely to determine the 

exon boundaries. These programs, such as GRAIL II (Xu et al., 1994a) and Xpound 

(Thomas & Skolnick, 1994), used ad-hoc methods to integrate splice site signals and 

content measures for refining exon prediction. The third class of gene finding systems 

attempted the task of assembling separate exon predictions into a complete gene 

structure, which would predict the entire protein sequence. The first systems were gm 

(Fields & Soderlund, 1990) for C. elegans genes and a mammalian system by Gelfand 

(1990). In an excellent review by Fickett and Tung (1992) of the different coding versus 
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non-coding potential methods, various different approaches to complete gene prediction 

were presented: GeneID (Guigo et al., 1992), a fast hierarchical ruled based system, 

GeneParser (Snyder & Stormo, 1993; Snyder & Stormo, 1995; Stormo & Haussler, 

1994), a neural network approach combined with pioneering work on dynamic 

programming for this problem, GenLang (Snyder & Stormo, 1993; Snyder & Stormo, 

1995; Stormo & Haussler, 1994), an approach based on linguistic state machines, Fgene 

(Solovyev et al., 1995), a linear discriminant analysis included in dynamic 

programming system, and the GRAIL based system GAP (Xu et al., 1994b).  

For dynamic programming methods the key to success is developing the right 

scoring function to optimize. A fruitful approach here has been to define a statistical 

model of genes that includes parameters describing codon dependencies in exons, 

characteristics in splice sites and other signals as well as a "state machine" containing 

information on what functional components are likely to follow others. The earliest 

theoretical work by (Stormo & Haussler, 1994) has inspired many followers to explore 

the power of a statistical framework for a gene model. The "state machine" conceptual 

structure has mostly been expressed by the parameters of a Markov process on the 

hidden variables. Therefore they are called hidden Markov models and can be seen as 

stochastic grammar models. Gene finding systems of this fourth generation are: an 

extended version of Xpound (Thomas & Skolnick, 1994), GeneMark.hmm (Lukashin & 

Borodovsky, 1998), a system based on the original prokaryotic version of the program, 

Veil (Henderson et al., 1997), and HMMGene (Krogh, 1997), a system conceptually 

based on the very early HMM work in E.coli called EcoParser (Krogh et al., 1994b). A 

more general class of probabilistic model, called a generalized HMM (GHMM), which 

is the closest implementation of the theoretical work by Haussler and Stormo (1994) 

and sometimes also called semi-hidden Markov model, was fully developed in the 

earliest Genie implementation (Kulp et al., 1996; Reese et al., 1997) and subsequently 

by GENSCAN (Burge & Karlin, 1997), which uses different training sets and different 

implementations of the so-called submodels.  

A good state-of-the-art performance overview gives the work by Burset and Guigó 

(1996) on human DNA. For Drosophila the GASP experiment presented at the 7th 

International conference on Intelligent Systems in Molecular Biology computational 

gives an excellent assessment and state-of-the-art overview of the technology. GASP 

was a blind test and was performed on a well-studied 2.9 mega-base sequence region of 
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the Drosophila melanogaster genome (Ashburner et al., 1999) (further described 

below). 

4.2 Gene datasets: Training of Genie 

A clear outcome from the GASP experiment (Reese et al., 1999) is that clean 

annotations from well-studied regions in genomes are absolutely essential effectively to 

evaluate, compare, and refine existing annotation methods. It is likewise clear that they 

are equally essential for improved, curated training sets used to train the models for 

gene prediction. Therefore I will discuss briefly the test bed for my studies, the genomic 

Adh region, as well as giving a short overview of the process that went into creating my 

training sets. 

4.2.1 Genomic DNA sequence 

The selection of a genomic target region for assessing the accuracy of 

computational genome annotation methods is a difficult task for several reasons: The 

genomic region has to be large enough, the organism has to be well studied, and enough 

auxiliary data has to be available to have a good experimentally verified "correct 

answer" but the data should be anonymous so that a blind test is possible. The Adh 

region of the Drosophila melanogaster genome met these criteria. Drosophila 

melanogaster is one of the most important model organisms and especially the Adh 

region had been extensively studied genetically together with other experiments such as 

cDNA sequencing. 

The 2.9 megabase Adh contig is large enough to be challenging, contained genes 

with a variety of sizes and structures, and included regions of high and low gene 

density.  The test was not a completely blind test, however, since several cDNA and 

genomic sequences for known genes in the region were available prior to the 

experiment. A handful of genes were also included in some parts of the Genie training 

procedure. The annotation for the entire contig has recently been released (Ashburner et 

al., 1999) and is the basis for the evaluation of Genie and GASP. 

4.2.2 Curated training sequences 

In order to derive a realistic description of the structural and compositional features 

of Drosophila genes, large non-redundant sets of sequences are required. Especially in 
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the case of complex models with many parameters to optimize, the requirement for very 

clean datasets is extremely important. Gene models such as Genie belong to this class. 

A collection of 275 multiple exon (Appendix C) and 141 single exon (Appendix D) 

non-redundant genes together with their start and stop codons and splice site structures 

in genomic DNA was compiled. This set was constructed by searching the GenBank 

nucleotide acid sequence database (version 109) for sequences containing single 

complete Drosophila genes (i.e. containing at least the initial ATG through to the stop 

codon) sequenced on the genomic level as opposed to the mRNAs. Certain conditional 

constraints were imposed on the data to filter out noisy and questionable entries: Only 

one CDS entry was allowed, which avoided alternative spliced genes; the annotation 

should be minimally self-consistent (no inframe stop codon and the minimal consensi 

for start codon, 5' and 3' splice sites, GT and AG respectively, should be matched); no 

pseudo genes were allowed; and genes marked as “putative” or “predicted” were 

removed. 

To retain a representative non-biased data set all related genes were removed from 

the filtered data where a sequence identity of >=80% using BLAST (Altschul et al., 

1990) was detected. This data set is publicly available at 

http://www.fruitfly.org/sequence/drosophila-dataset.html in Genbank flat file format 

and as separate start codon, 5' splice site and 3' splice site sequence sets. These sets have 

been used as the basis for the training in the GASP experiment so that a fair comparison 

of the applied methods was possible because they were all trained on the same 

underlying data sets. 

For the individual training of the coding exon models in Genie, which is not so 

dependent on high quality annotations, a larger collection of all available mRNA 

sequences from GenBank and directly from the BDGP site was used. 

4.3 A generalized hidden Markov model for gene finding 

Hidden Markov models are an extension to discrete-time Markov processes. They 

have been studied and applied mostly in speech recognition. Rabiner (1989) provided an 

excellent, detailed tutorial. They have recently begun to be used extensively in the 

computational biology field. In particular they have been used for amino acid profile 
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searching. (See the PFAM database of HMM profiles: 

http://www.sanger.ac.uk/Software/Pfam; (Bateman et al., 2000); see also Durbin et al. 

(1998)) Hidden Markov models can be used to model real world signals, whether they 

are characters from some alphabet, speech pattern or temperature readings. There are 

three reasons for the power of modeling signals using hidden Markov models: 

• A model of the signal can be used to derive the theory for the signal-processing 

program, which in turn will provide useful output from the signals. 

• The source of the signal can be studied, even if it cannot be seen. 

• Signal models work well in making predictions and recognition. 

A hidden Markov model describes a probability distribution over a potentially 

infinite number of sequences. An example of a simple HMM that models sequences 

composed of two letters (a,b) is shown in Figure 4-2. This toy HMM (taken from Eddy 

(1998)) would be an appropriate model for a problem in which we thought sequences 

started with one residue composition (a-rich, perhaps), and then switched once to a 

different residue composition (b-rich, perhaps). The HMM consists of two states 

connected by state transitions. Each state has a symbol emission probability distribution 

for generating (matching) a symbol in the alphabet. It is convenient to think of an HMM 

as a model that generates sequences. Starting in an initial state, we choose a new state 

with some transition probability (either staying in state 1 with transition probability t1,1, 

or moving to state 2 with transition probability t1,2); then we generate a residue with an 

emission probability specific to that state (e.g. choosing an a with p1(a)). We repeat the 

transition/emission process until we reach the end state. At the end of this process, we 

have a hidden state sequence that we do not observe, and a symbol sequence that we do 

observe. 
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Figure 4-2: A toy HMM, modeling sequences of a's and b's as two regions of 
potentially different residue composition (taken from Eddy (1998)). The model is 
drawn (top) with circles for states and arrows for state transitions. A possible state 
sequence generated from the model is shown, followed by a possible symbol 
sequence. The joint probability P(x,����¦HMM) of the symbol sequence and the state 
sequence is a product of all the transition and emission probabilities. Notice that 
another state sequence (1-2-2) could have generated the same symbol sequence, 
though probably with a different total probability. This is the distinction between 
HMMs and a standard Markov model with nothing to hide: in an HMM, the state 
sequence (e.g. the biologically meaningful alignment) is not uniquely determined 
by the observed symbol sequence, but must be inferred probabilistically from it. 

 

 

The name “hidden Markov model” comes from the fact that the state sequence is a 

first-order Markov chain, but only the symbol sequence is directly observed. The states 

of the HMM are often associated with meaningful biological labels, such as “exon 

position 10”. In our toy HMM, for instance, states 1 and 2 correspond to a biological 

notion of two sequence regions with differing residue composition. Inferring the 

alignment of the observed protein or DNA sequence to the hidden state sequence is like 

labeling the sequence with relevant biological information. 

Once an HMM is drawn, regardless of its complexity, the standard dynamic 

programming local alignment algorithms can be used for aligning and scoring. In the 
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HMM terminology these algorithms are called Forward (for scoring) and Viterbi (for 

alignment). 

Model Parameters can be set for an HMM in two ways. An HMM can be trained 

from initially unaligned (unlabeled) sequences. Alternatively, an HMM can be built 

from pre-aligned (pre-labeled) sequences (i.e. where the state paths are assumed to be 

known). In the latter case, the parameter estimation problem is simply a matter of 

converting observed counts of symbol emissions and state transitions into probabilities. 

Training algorithms are of interest because we may not yet know a plausible alignment 

for the sequences in question. The standard HMM training algorithms are Baum-Welch 

expectation maximization (Baum, 1972) and gradient descent. 

HMMs were introduced into computational biology in the late 1980s (Churchill, 

1989), and for use as so-called “profile” models in 1994 by David Haussler's group at 

the University of Santa Cruz (Brown et al., 1993; Krogh et al., 1994a). Krogh at al. 

(1994a) introduced an HMM architecture that was well suited for representing profiles 

of multiple sequence alignments. For each consensus column of the multiple alignment, 

a “match” state models the distribution of residues allowed in the column. An “insert” 

state and “delete” state at each column allow for insertion of one or more residues 

between that column and the next, or for deleting the consensus residue. Profile HMMs 

are strongly linear, left-right models, unlike the general HMM case. Figure 4-3 (taken 

from Eddy (1998)) shows a small profile HMM corresponding to a short multiple 

sequence alignment. 
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Figure 4-3: A small profile HMM (right) representing a short multiple alignment 
of five sequences (left) with three consensus columns (taken from Eddy (1998)). 
The three columns are modeled by three match states (squares labeled m1, m2 and 
m3), each of which has 20 residue emission probabilities, shown with black bars. 
Insert states (diamonds labeled i0-i3) also have 20 emission probabilities each. 
Delete states (circles labeled d1-d3) are “mute” states that have no emission 
probabilities. A begin and end state are included (b,e). State transition 
probabilities are shown as arrows. 

 

Additional background information on HMMs can be found in the excellent 

reviews of the application of HMMs in molecular biology by Krogh (1998), Eddy 

(1998) and in Durbin et al. (1998). 

4.3.1 Generalized hidden Markov models 

A generalized hidden Markov model (GHMM) is an enhancement of a standard 

HMM model as described in the previous section. In a standard hidden Markov model, 

viewed as a generator, each state emits a single symbol. A GHMM is a more general 

model in which each state can emit one or more symbols according to an arbitrary 

distribution. Each state presents an independent submodel, which may itself be a hidden 

Markov model or any statistical model. 

Figure 4-4 shows a simple GHMM that models eukaryotic gene structure. The 

GHMM is represented as a graph. The states in the model are shown as the arcs of the 

graph. Nodes in the graph represent transitions between states. (This is different from 

the typical graphical representation of regular HMMs as shown in the previous section.) 
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Each state corresponds to a submodel of an abstract gene feature such as an “Internal 

Exon” (E) or an “Intron” (I). For any sequence of bases, x, and state q, the submodel 

associated with the state q defines a likelihood for the sequence x. This likelihood is 

denoted P(x|q). When the GHMM is viewed as a generative statistical model, this is the 

probability that the sequence x is emitted when the hidden Markov process is in state q. 

The likelihood functions, one for each state, are part of the definition of the GHMM. 

The graph of a GHMM has a unique source node B (for Begin) and a unique sink 

node F (for Final). The process of generating a string from a GHMM can be viewed as 

taking a random walk in the graph for the GHMM from the source to the sink. For any 

state q, the node that the arc for state q leads to, is denoted node (q). Once in this node, a 

next state is chosen at random from among the outgoing arcs from this node, 

independent of any previous choices. The probability of choosing the next state r is 

denoted P(r|node(q)). For example, in Figure 4-4, the state I (Intron) leads to the node 

(A) (Acceptor). After the acceptor can come either the internal exon state (E) or the 

final exon (EF). The former is chosen with probability P(E|A) and the latter with 

probability P(EF|A) where P(E|A)+P(EF|A) = 1. These parameters are part of the 

definition of the GHMM, and are in practice determined from training data, as are 

parameters defining the likelihood functions P(x|q) defined above. 

The full process of generating a string from a GHMM consists of a sequence of 

random choices: First a state q1 is chosen from among the outgoing arcs of the source 

node B. Then a substring x1 is generated according to the probability distribution 

P(∃|q1). Then a next state q2 is selected from among the outgoing arcs from node(qi). 

Then a substring x2 is generated according to the probability distribution P(∃|q2), etc., 

continuing like this until a state qk that leads to the sink node is selected. This state 

emits the last substring xk. The full string emitted by the HMM is the concatenation X = 

x1 … xk of all substrings that are emitted. All random choices made in the process of 

generating the string x are independent, except for the dependencies in the sequence q1 

… qk of states, which form a Markov chain. In the application of GHMMs, this 

sequence of states is not observed; only the sequence X is observed. 

A parse Φ of the sequence X is defined to be a pair consisting of a sequence of 

states q1 … qk and a corresponding sequence of substrings x1 … xk, where X = x1 … xk, 

q1 is a state arc coming out of the unique source node (B), and qk is a state arc leading to 



  4-61 

the unique sink node (F). The GHMM defines a joint likelihood of the sequence X = = 

x1 … xk, and the parse Φ = (q1 … qk; x1 … xk,), according to the generative model 

described above. It is the joint independent probability of the subsequences given the 

corresponding states and the probability of the transitions between states. That is, 
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Given only the observed sequence X, using a variant of the Viterbi algorithm 

(Rabiner & Juang, 1986), we can calculate the parse Φ that maximizes the joint 

independent probability, i.e. the most likely parse of X. In a GHMM that represents a 

gene structure, such as the one in Figure 4-4, this most likely parse represents the 

model's prediction of the most likely gene structure within the sequence X. This variant 

of the Viterbi algorithm used to find the most likely parse is a dynamic programming 

algorithm that is essentially the same as the one defined by Auger and Lawrence (1989) 

to identify segment neighborhoods, by Sankoff (1992) optimally to decompose a 

sequence into disjoint regions with particular properties, and by Gelfand and Roytberg 

(1993), Snyder and Stormo (1993), Stormo and Haussler (1994), and many others to do 

gene finding, so I do not elaborate on it here. GHMMs place these previous approaches 

within a convenient and general probabilistic framework. 

Figure 4-4: A simple GHMM for a sequence containing a gene. The arcs represent 
states that emit strings of bases and nodes represent transitions between states. 
The state labels are J5': 5' UTR, EI: Initial Exon, E: Exon, I: Intron, E: Internal 
Exon, EF: Final Exon, ES: Single Exon, and J3': 3' UTR. The node labels are B: 
Begin, S: Start Translation, D: Donor, A: Acceptor, T: Stop Translation, F: Final. 
The arrows imply a generation of bases from 5' to 3'. 
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The GHMM in Figure 4-4 represents only the basic ordering of gene features, and 

fails to capture fully the syntactic restrictions of a “legal gene parse.” In an ideal DNA 

sequence, the parse is “frame consistent,” i.e., the total number of coding nucleotides is 

a multiple of three and the reading frame is consistent from exon to exon. We can add 

additional states to the model graph such that only frame consistent parses are allowed. 

Figure 4-5 shows the model graph representing the resulting frame consistent GHMM. 

The three levels represent the three frames. Exon length can be restricted in the 

likelihood functions P(x|q) to equal 0, 1 or 2 (modulo 3) for the various exon states in 

this GHMM in such a way to enforce frame consistency (for more details see (Kulp et 

al., 1997)). Another extension to the GHMM in the implementation, but not shown in 

the graph in Figure 4-5, is an arc leading back from node F to node B labeled with a 

state that generates intergenic non-coding bases between genes. In this way, the 

implemented structure allows multiple genes on both strands of the DNA. It has to be 

noted that this graph structure prohibits a more rare gene organization of genes within 

other genes. 

Figure 4-5: A GHMM including frame constraints. "B" is the begin state, "J5'" 
the 5' UTR content sensor, "S" the start codon signal sensor, "EI" the initial exon 
content sensor, "D" the 5' splice site and "A" the 3' splice site sensor, "E" the 
internal exon content sensor, "I" the intron content sensor, "EF" the final exon 
content sensor, "T" the start codon signal sensor and "F" the end state. "ES" 
stands for the single exon gene content sensor. For multiple genes in genomic 
regions such as in the Adh region an additional arc loops from "F" to "B" and 
models the intergenic region including the promoter sensor. 
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4.3.1.1 Signal sensor models 

Signal sensors are used to recognize transitions between states in a GHMM. This 

type of sensor is used in a pre-processing step to identify candidate sites where state 

transitions can occur. The dynamic programming method then uses the pre-processed 

transitions and finds the most likely parse. In the GHMMs shown in Figure 4-4 and 

Figure 4-5 the nodes correspond to gene features such as splice sites (GT and AG) and 

the positions of start and stop codons.  

4.3.1.2 Content sensor models 

Content sensors are used to estimate the likelihood of a subsequence given a 

particular state in the GHMM. Some basic content sensors used by Genie are described 

in detail in Kulp et al. (1996). Since that paper has been published, a more sophisticated 

type of content sensor has been developed. This type of content sensor integrates 

evidence from multiple sources and estimates a likelihood of a subsequence from the 

combined information.  

In the Genie content sensor, each source of evidence is called a component; a 

component is trained to recognize a specific feature. Figure 4-6 shows an example of a 

fictitious subsequence whose likelihood is being evaluated by an internal exon content 

sensor. The internal exon content sensor is composed of several components: a 

nucleotide component, a codon component, end-region components representing the 

regions adjacent to the 5' and 3' splice sites, and a database homology match 

component. A component returns a likelihood for each potential feature occurrence, 

called an "extent." In the figure, the maximum likelihood is determined by the joint 

probability of the extents shown at the bottom of the figure, i.e. a 3' splice site extent, 

followed by two nucleotide extents, a database match extent, and three codon extents. 

Again, dynamic programming is used to decompose the subsequence into a series of 

extents in such a way that the joint probability of all extents is maximized. This 

decomposition is then used to calculate the likelihood. In addition to this likelihood a 

length distribution is added to each content sensor. 

This simple, efficient method is a modular approach to developing an effective 

gene finding system because components can be easily added to or subtracted from a 

content sensor.  
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Figure 4-6: A sample content sensor (coding exon) combines evidence from 
multiple components to derive a maximum likelihood of the sequence. The arrow 
shows the combination of component features corresponding to the maximum 
likelihood. 

 

 

4.4 Implementation of Genie 

The Genie program has been developed over many years. The first implementation 

was from the original work first described in Kulp et al. (1996). This initial version was 

trained and optimized for human genes. Improvements on the splice site models as well 

as a description of the training for Drosophila melanogaster and initial results for this 

organism were reported in Reese et al. (1997). In early 1997 the system was extended to 
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integrate homology information into the statistical gene finding framework described in 

(Kulp et al., 1997).  

In 1999 a faster version was developed. This new version is also a very modular 

system that allows for easy integration of new nodes, arcs and sensors. It also adopted 

the GFF format (formerly known as the Gene Feature Finding format; (Bruskiewich et 

al., 1999)) as an exchange format for pre-computed external sensors to be integrated 

into the GHMM framework. In addition the training was automated to allow easy 

retraining of the system for other organisms. 

4.4.1 EST/cDNA sequence integration 

In Genie 2, EST/cDNA alignments are used to predict intron splice pairs. This 

program is called GenieEST.  Using BLASTN (Altschul & Gish, 1996), pairs of hits to 

the same subject sequence were extracted.  When such pairs are approximately 

contiguous in the subject sequence and aligned near GT/AG splice boundaries then an 

intron was predicted.  The content sensor models for splice sites and introns are 

modified such that the probability was artificially raised for these so-called EST introns, 

effectively constraining the system to ensure that the introns were correctly annotated 

according to the EST/cDNA evidence. This system GenieEST was tested and evaluated 

in the GASP assessment and results are listed below. 

For the application to the complete genome of Drosophila, Genie's underlying 

graph model was extended to integrate information from 5' and 3' EST sequences from 

the same sequenced clone. The model was changed such that GenieEST was 

constrained so that it could not introduce intergenic regions between neighboring 5' and 

3' EST alignments from the same cDNA clone. 

4.4.2 Protein homology integration 

Protein sequence homology is included as part of the content sensor for protein 

coding regions (described in detail in Kulp et al. (1997)). The corresponding program 

name as submitted to GASP is GenieESTHOM.  Using BLASTX, candidate 

homologues are identified and assigned a likelihood probability similar to the Blast “S” 

score.  The likelihood of a coding region that includes a protein database hit may be 
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higher than by statistical analysis alone depending on the degree of similarity. Figure 

4-7 shows a typical refined prediction using homology information.  

Figure 4-7: The diagram shows the gene prediction for the final 3,000 bases of the 
11Kb DNA GenBank entry (Accession D14813). The first prediction is the result of 
running Genie without homology information. Genie fails to identify the complete 
final exon and predicts an additional small final exon. The second prediction 
includes BLASTX searches (GenieESTHOM) against the “nr” protein database. 
Here, two segments from a strong homologue (PIR Accession A38646) are found, 
shown shaded, with a small insertion between them. Using the additional 
information, the GenieESTHOM prediction is now correct. 
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4.4.3 Promoter neural network integration into Genie 

Part of the gene structure GHMM submitted to GASP includes the core promoter 

region.  The content sensor for this region is the time-delay neural network NNPP 

described in Chapter 2. The modularity of Genie was used to introduce this additional 

content sensor. For an unknown sequence the transcription start sites are pre-calculated 

and Genie then determines which core promoter fits best into its parse. This promoter 

site is then reported in the output file. The low specificity of independent promoter 

prediction (see Chapter 2) is compensated in this approach by integrating promoter 

prediction into the complete gene prediction.  Thus, in effect, possible promoter sites are 

only considered upstream of a probable coding region.  
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Chapter 5 Results of Genie in Drosophila 

This chapter addresses the general problem of evaluating computational annotation 

systems and gives results of the application of Genie in the Adh test bed sequence. In 

particular, Section 5.1 describes an annotation assessment project by reviewing several 

measures of the accuracy of gene and promoter prediction programs at the nucleotide, 

exon and gene levels. In addition to these traditional measures a novel statistic for 

measuring gene assembly tendencies is introduced. Problems in the final evaluation 

process are critically discussed. A discussion on the necessity of visualization tools for 

assessing and studying annotation methods concludes this section. Sections 5.2 covers 

the results of the application of Genie in Adh. Genie's performance is compared to that 

of other programs tested in the GASP experiment. The following Sections 5.3 - 5.4 take 

a closer look at the accuracy of the program addressing some of the strength and 

weaknesses in the current system. A collection of predicted novel genes in Adh is listed. 

Section 5.5 gives the results of the integrated promoter prediction in Genie and Section 

5.6 addresses specific problems with the gene structure model applied in the GASP 

experiment. Resulting final improvements of the final program are presented. 

5.1 Evaluating gene prediction 

To assess genome annotations objectively, we need a test sequence that satisfies the 

following three requirements: 

• The "correct answer", in our case the location of genes, has to be known. 

• The underlying sequence region has to be representative of the entire genome. 

• Meaningful evaluation statistics that describe the performance of programs have to 

be formulated. 
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In the GASP experiment we tried to do exactly that. Here I will give a short 

introduction to this experiment and discuss some of the evaluation statistics that were 

developed during the experiment.  

The GASP experiment, the first of its kind, was similar in many ways to the CASP 

(Critical Assessment of Techniques for protein structure prediction) contests for protein 

structure prediction (Dunbrack et al., 1997; Levitt, 1997; Moult et al., 1997; Moult et al., 

1999; Sippl et al., 1999; Zemla et al., 1999).  However, unlike the CASP contest and 

following the famous fly tradition, GASP was promoted as a collaboration to evaluate 

various techniques for genome annotation. 

Participants were given the finished genomic sequence for the Adh region and some 

related training data, but they did not have access to the full-length cDNA sequences 

that were sequenced for the paper by Ashburner et al. (1999) that describes the Adh 

region in depth. The experiment was widely announced and open to any participants.  

Submitters were allowed to use any available technologies and were encouraged to 

disclose their methods. Since a large group of participants was attracted and they 

provided a wide variety of annotations, GASP was able to assess the state of art in 

genome annotation. 

Twelve groups participated in GASP, submitting annotations in one or more of six 

categories: ab initio gene finding, promoter recognition, EST/cDNA alignment, protein 

similarity, repetitive sequence identification and gene function.  

5.1.1 Two standard annotation sets for the same Adh region (GASP) 

We assembled two sets of gene annotations for the Adh region to use for evaluating 

gene prediction (see Appendix A for URL). The first standard annotation set, known as 

the std1 data set, used high quality sequence from a set of 80 full-length cDNA clones 

from the Adh region to provide a standard with annotations that are very likely to be 

correct but certainly are not exhaustive.  The second standard annotation set, known as 

the std3 data set, was built from the annotations being developed for Ashburner et al. 

(1999) to give a standard with more complete coverage of the region, although with less 

confidence about the accuracy and independence of the annotations. Std1 was a subset 

of std3. 
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The gene prediction evaluations focused on annotations that are specific to the 

coding region, from the start codon through the various intron-exon boundaries to the 

stop codon, and on promoter annotations. 

The goal for our first standard set, std1, was to build a set of annotations that were 

believed very likely to be correct in their fine details (e.g. exact locations for splice 

sites), even if it did not include every gene in the region.  Std1 is based on alignments of 

80 high quality, full-length cDNA sequences from this region with the high quality 

genomic sequence for the contig.  The cDNA sequences are the product of a large 

cDNA sequencing project at the Berkeley Drosophila Genome Project and had not been 

submitted to GenBank at the time of the experiment.  Working from five cDNA 

libraries, the longest clone for each unique transcript was selected and sequenced to a 

high quality level reaching an error rate of less than 1 in 10,000 bases.  Starting with 

these cDNA sequences, alignments were generated to the genomic sequence using sim4 

(Florea et al., 1998) and then filtered on several criteria (for details see the original GASP 

publication (Reese et al., 2000)). This process resulted in forty-three sequences from the 

Adh region for which structures were confirmed by alignments of high quality cDNA 

sequence data with an error rate again of less than 1 in 10,000 bases with high quality 

genomic data and by the fit of their splice sites to a Drosophila splice site model. Of 

these forty-three sequences, seven had a single coding exon and thirty-six had multiple 

coding exons.  Start codon and stop codon annotations for these structures were added 

from the corresponding records in the std3 data set. 

The goal for the second standard set, called std3, was to build the most complete set 

of annotations possible while maintaining some confidence about their correctness.  

Ashburner et al. (1999) compiled an exhaustive and carefully curated set of annotations 

for this region of the Drosophila genome based on information from a number of 

sources, including BLASTN, BLASTP (Altschul et al., 1990), and PFAM alignments 

(Bateman et al., 2000; Sonnhammer et al., 1998; Sonnhammer et al., 1997), high scoring 

GENSCAN (Burge & Karlin, 1997) and Genefinder (Green, 1995) predictions, ORFFinder 

results (Friese et al., 1999), full length cDNA clone alignments (including those used in 

std1), and alignments with full length genes from GenBank.  This set included 222 gene 

structures: 39 with a single coding exon, and 183 with multiple coding exons.  Of these 

222 gene structures, 182 are similar to a homologous protein in another organism or 

have a Drosophila EST hit.  For these structures, the intron-exon boundaries were 
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verified by partial cDNA/EST alignments using sim4 (Florea et al., 1998), homologies 

were discovered using BLASTX, TBLASTX and PFAM alignments, and gene structure 

was verified using a version of GENSCAN trained for finding human genes.  Of the 

fifty-four remaining genes, fourteen had EST or homology evidence but were not 

predicted by GENSCAN or Genefinder, and forty were based entirely on strong 

GENSCAN and Genefinder predictions.  All of this evidence was evaluated and edited 

by experienced Drosophila biologists, resulting in a data set that exhaustively covers the 

region with a high degree of confidence. 

Building a set for the evaluation of transcription start site or, more generally, for 

promoter recognition, proved to be even more difficult. For the genes in the Adh region 

almost no experimentally confirmed annotation for the transcription start site existed. 

As the 5’ UTR regions in Drosophila can extend up to several kilobases, the region 

directly upstream of the start codon could not be used. To obtain the best possible 

approximation, the 5’ ends of annotations from Ashburner et al. (1999) were taken, 

where the upstream region relied on experimental evidence (the 5’ ends of full-length 

cDNAs) and for which the alignment of the cDNA to the genomic sequence included a 

good open reading frame.  The resulting set contained 92 genes out of the 222 

annotations in the std3 set (Ashburner et al., 1999). This number is larger than the number 

of cDNAs used for the construction of the std1 set described above because cDNAs that 

were already publicly available were included. The 5’ UTR of these 96 genes has an 

average length of 1,860 basepairs, a minimum length of 0 basepairs (when the start 

codon was annotated at the beginning) and a maximum length of 36,392 basepairs.  

5.1.2 Evaluation statistics for gene finding 

An ideal gene prediction tool would produce annotations that were exactly correct 

and entirely complete.  The fact that no existing tool has these characteristics reflects 

our incomplete understanding of the underlying biology as well as the difficulty of 

building adequate gene models in a computer.  While no tool is perfect, each tool has 

particular strengths and weaknesses and any performance evaluation should be in the 

context of an intended use. In one of the first reviews of gene prediction accuracy, 

Fickett and Tung (1992) developed a method that measured predictors’ ability to 

correctly recognize coding regions in genomic sequence.  They used their method to 

compare published techniques and concluded that in-frame hexamer counts were the 
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most accurate measure of a region’s coding potential.  Burset and Guigó (1996) 

recognized that there are a wide variety of uses for gene predictions and developed 

measures--including base level, exon level, and gene level specificity and sensitivity--

that describe a predictor’s suitability for a particular task. 

When assessing the accuracy of predictions, each prediction falls into one of four 

categories.  A true positive (TP) prediction is one that correctly predicts the presence of 

a feature (Figure 5-1).  A false positive (FP) prediction incorrectly predicts the presence 

of a feature (Figure 5-2).  A true negative (TN) prediction is correct in not predicting the 

presence of a feature when it isn’t there. A false negative (FN) prediction fails to predict 

the existence of a feature that actually exists (Figure 5-3).  The sensitivity of a tool is 

defined as TP/(TP+FN), and can be thought of as a measure of how successful the tool 

is at finding things that are really there.  The specificity of a tool is defined as 

TP/(TP+FP), and can be thought of as a measure of how careful a tool is about not 

predicting things that aren’t really there.  Burset and Guigó (1996) also use a correlation 

coefficient and an average correlation coefficient. These measures were not used in 

GASP because they depend on predictors’ false negative information and it is 

recognized that the evaluation sets were constructed in such a way that the false 

negative information is not trustworthy. 
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Figure 5-1: True positives (TP). True positive predictions at the gene level against 
the std1 data set (shown right below the Adh sequence bar) are demonstrated for 
two fictional prediction programs, “pred 1" and “pred 2”. “Pred 1” predicts 3 
genes and “pred 2” predicts seven genes. In std1 three genes are annotated. The 
true positive genes for “pred 1” are noted right below the shadowed boxes crossing 
all three predictions with the “TP” label. “Pred 1” has two true positive 
predictions (genes 2 and 3 in std1). “Pred 2” has also two true positive predictions 
(“TP” labels on the bottom of the figure) but these are genes 1 and 2 in the std1 
annotation set. 
 

 



  5-73 

Figure 5-2: False positives (FP). The false positive predictions at the gene level 
against the std1 data set are demonstrated. “Pred 1” has one false positive 
predicted gene and “pred 2” has five. 
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Figure 5-3: False negative (FN). The false negative predictions at the gene level 
against the std1 data set are demonstrated. Both “pred 1” and “pred 2” have one 
false negative predicted gene. 

 

 

5.1.3 Base level 

The base level score measures whether a predictor is able to correctly label a base 

in the genomic sequence as being part of some gene.  It rewards predictors that get the 

broad sweeps of a gene correct, even if they don’t get the details such as the splice site 

boundaries entirely correct.  It penalizes predictors that miss a significant portion of the 

coding sequence, even if they get the details correct for the genes they do predict. 

Sensitivity and specificity measures were used as defined above as the measures of 

success in this category. 

5.1.4 Exon level 

Exon level scores measure whether a predictor is able to identify exons and 

correctly recognize their boundaries.  Being off by a single base at either end of the 
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exon makes the prediction incorrect.  Since only coding exons are considered, the first 

exon is bracketed by the start codon and a 5' splice site, the last exon is bracketed by a 3' 

splice site and the stop codon, and the interior exons are bracketed by a pair of splice 

sites.  As measures of success in this category, two statistics in addition to sensitivity 

and specificity are used.  The missed exon score is a measure of how frequently a 

predictor completely failed to identify an exon (no prediction overlap at all), while the 

wrong exon score is a measure of how frequently a predictor identifies an exon that has 

no overlap with any exon in the standard sets.  The missed exon score is the percentage 

of exons in the standard set for which there were no overlapping exons in the predicted 

set.  Similarly, the wrong exon score is the percentage of exons in the predicted set for 

which there were no overlapping exons in the standard set. 

5.1.5 Gene level 

Gene level sensitivity and specificity measure whether a predictor is able to 

correctly identify and assemble all of a gene’s exons.  For a prediction to be counted as 

a true positive, all of the coding exons must be identified, every intron-exon boundary 

must be exactly correct, and all of the exons must be included in the proper gene.  This 

is a very strict measure that addresses a tool’s ability to perfectly identify a gene.  In 

addition to the sensitivity and specificity measures based on absolute accuracy, the 

missed genes score is used as a measure of how frequently a predictor completely 

missed a gene (a gene is considered missed if none of its exons are overlapped by a 

predicted coding gene; see Figure 5-4) and the wrong genes score is used as a measure 

of how frequently a predictor incorrectly identified a gene (a prediction is considered 

wrong if none of its exons are overlapped by a gene from the standard set; see Figure 

5-5).  
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Figure 5-4: Missed genes (MG). “Pred 1” does not overlap the first gene in std1. 
Therefore it is marked as a missed gene. “Pred 2” does not miss any gene from 
std1. 
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Figure 5-5: Wrong genes (WG). “Pred 1” and “pred 2” both have an extra 
predicted gene at the end of the example sequence that does not overlap any gene 
in std1. Therefore these predictions are counted as wrong genes. In addition, “pred 
2” has three more wrong genes. 
 

 

5.1.6 Split and Joined genes 

The exon level scores discussed above measure how well a predictor recognizes 

exons and gets their boundaries exactly correct.  The gene level scores measure how 

well a predictor can recognize exons and assemble them into complete genes.  Neither 

of these scores directly measures a predictor’s tendency to incorrectly assemble a set of 

predicted exons into more or fewer genes than it should.  During GASP we developed 

two new measures, split genes and joined genes, which describe how frequently a 

predictor incorrectly splits a gene’s exons into multiple genes and how frequently a 

predictor incorrectly assembles multiple genes’ exons into a single gene.  Because the 

coverage of the std1 data set is so incomplete, split genes and joined gene scores are 

only included from the comparison with std3.  A gene from the standard set is 

considered split if it overlaps more than one predicted gene (see Figure 5-6).  Similarly, 

a predicted gene is considered joined if it overlaps more than one gene in the standard 
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set (see ).  The split genes measure is defined as the sum of the number of predicted 

genes that overlap each standard gene divided by the number of standard genes that 

were split.  The joined genes measure is the sum of the number of standard genes that 

overlap each predicted gene divided by the number of predicted genes that were joined. 

A score of 1 is perfect and means that each of the genes from one set overlaps exactly 

one gene from the other set.  

Figure 5-6: Split genes (SG). The toy example shown in Figure 5-1 to Figure 5-5 is 
modified to demonstrate the measures for split and joined genes. Here “pred 2” 
breaks up the annotated second gene in std1 into two separate single exon genes 
(the splitting is demonstrated with the shaded box). Therefore this prediction is 
counted as a split gene. 
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Figure 5-7: Joined genes (JG). “Pred 1” merges the annotated gene 2 and 3 in the 
std1set into one long gene. For “pred 1” this is counted as a joined gene (the join is 
demonstrated with the shaded box). 

 

 

5.1.7 Application of these measures to “correct answer” data sets std1/std3 

The std1 dataset is built in such a way that it should be correct in the details of the 

genes that it describes, though it is clear that it only includes a small portion of the 

genes in the region.  The std3 data set, on the other hand, is as complete as was possible, 

but does not have rigorous independent evidence for all of its annotations.  For the std1 

dataset, the TP count (it was predicted and it exists in the standard) and FN count (it was 

not predicted but it does exist in the standard) are reliable because of the confidence in 

the correctness of the predictions in the set.  On the other hand, the TN count (it was not 

predicted and it is not in the standard set) and FP count (it was predicted but is not in the 

standard set) are not reliable because they both assume that the standard correctly 

describes the absence of a feature and it is known that there are genes missing from 

std1.  It follows that sensitivity is meaningful for std1 because it only depends on TP 

and FN but that one can be less confident about the specificity score, since it depends on 

TP and FP.  A similar logic applies to the std3 dataset, where the confidence in the set’s 
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completeness but not its fine details suggests that the TP and FP scores are usable but 

that the TN and FN scores are not.  This means that for std3, the specificity measure can 

be used to describe a predictor’s performance but that sensitivity is likely to be 

misleading. 

5.1.8 Evaluation of promoter predictions 

For evaluating promoter predictions the measures proposed by Fickett and 

Hatzigeorgiou (1997) were adopted.  They evaluated the success of promoter 

predictions by calculating the percentage of correctly identified transcription start sites 

versus the false positive rate. A TSS is regarded as correctly identified if a program 

makes one or more predictions within a certain "likely" region around the annotated 

site. The false positive rate is defined as the number of predictions within the "unlikely" 

regions outside the "likely" regions divided by the total number of bases contained in 

the unlikely set. As the annotation of the TSS is only preliminary and not 

experimentally confirmed, a rather large region of 500 bases upstream and 50 bases 

downstream of the annotated TSS is chosen as the "likely" region (see Figure 5-8). The 

upstream region is always taken as the "likely" region, even if it overlaps with a 

neighboring gene annotation on the same strand. The "unlikely" region for each gene 

thus consists of the rest of the gene annotation, from base 51 downstream of the TSS to 

the end of the final exon. 
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Figure 5-8: Promoter prediction in Adh. Two toy genes are shown in the schematic, 
one on the forward and one on the reverse strand. The shadowing demonstrates 
the classification of the sequence into “likely” regions (+500 to -50 around the TSS; 
medium shadowing), “unlikely” region, overlapping the coding gene (dark 
shadowing) and “unknown” region (light shadowing) for the rest of the sequence. 
 
 

 

5.1.9 Visualization of the annotations 

Generating “good” annotations generally requires integrating multiple sources of 

information, such as the results of various sequence analysis tools plus supporting 

biological information.  Visualization tools that display sequence annotations in a 

browsable graphical framework make this process much more efficient. Visualization 

tools are essential in order to evaluate genome annotations.  When annotations are 

displayed visually, overall trends become apparent, for example gene-rich vs. gene-poor 

regions. During all my work I was fortunate in that the Berkeley Drosophila Genome 

Project had built a flexible suite of genome visualization tools (Helt & al., 1999) that 

were used to build a genome annotation browser called CloneCurator (Harris et al., 

1999). 

CloneCurator (Figure 5-9) displays features on a sequence as colored rectangles.  

Features on the forward strand appear above the axis, while those on the reverse strand 

appear below the axis.  The display can be zoomed and scrolled to view areas of interest 

in more detail.  A configuration file identifies the feature types that are to be displayed, 
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and assigns colors and offsets to each one. CloneCurator was used to assess the GASP 

predictions. 

5.2 Accuracy of Genie in Adh  

In the GASP experiment on the Adh sequence three sets of predictions generated by 

Genie were assessed. The first, named Genie, was generated using the GHMM trained 

on the cleaned gene collection described in 4.2 based on statistical information only. 

The second set, named GenieEST, was generated using the same signal sensors as Genie 

but extended the content sensors by incorporating EST information for the 

determination of the splice boundaries. The third prediction, named GenieESTHOM, 

used, in addition to all the models from GenieEST, protein homology information from 

BLAST runs (Altschul & Gish, 1996) against the non-redundant protein Genbank 

database (nr). This run resulted in DNA-protein alignments to related protein sequences 

in Drosophila melanogaster, as well as to related protein sequences in other organisms. 
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Table 5-1: GASP Evaluation of gene finding systems (taken from (Reese et al., 
2000)). The evaluation is divided into three categories: Base level, exon level and 
Gene level. The statistics reported are Sensitivity (Sn), Specificity (Sp), Missed 
Exons (ME), Wrong Exons (WE), Missed Genes (MG), Wrong Genes (WG), Split 
Genes (SG) and Joined Genes (JG). "Std1" and "std3" indicate against which 
standard set the statistics are reported. 

 

Fgene
s
CGG1

Fgene
s
CGG2

Fgene
s
CGG3

Gene
ID
v1

Gene
ID v2

Genie Genie
EST

Genie
EST
HOM

HMM
Gene

MAGPIE
exon

Grail
exp

Sn std1 0.89 0.49 0.93 0.48 0.86 0.96 0.97 0.97 0.97 0.96 0.81
Base
level Sp

std3
0.77 0.86 0.60 0.84 0.83 0.92 0.91 0.83 0.91 0.63 0.86

Sn std1 0.65 0.44 0.75 0.27 0.58 0.70 0.77 0.79 0.68 0.63 0.42

Sp
std3

0.49 0.68 0.24 0.29 0.34 0.57 0.55 0.52 0.53 0.41 0.41

ME(%)
std1

10.5 45.5 5.6 54.4 21.1 8.1 4.8 3.2 4.8 12.1 24.3

Exon
level

WE(%)
std3

31.6 17.2 53.3 47.9 47.4 17.4 20.1 22.8 20.2 50.2 28.7

Sn
std1

0.30 0.09 0.37 0.02 0.26 0.40 0.44 0.44 0.35 0.33 0.14

Sp
std3

0.27 0.18 0.10 0.05 0.10 0.29 0.28 0.26 0.30 0.21 0.12

MG(%)
std1

9.3 34.8 9.3 44.1 13.9 4.6 4.6 4.6 6.9 4.6 16.2

WG(%)
std3

24.3 24.8 52.3 22.2 30.5 10.7 13.0 15.5 14.9 55.0 23.7

SG 1.10 1.10 2.11 1.06 1.06 1.17 1.15 1.16 1.04 1.22 1.23

Gene
level

JG 1.06 1.09 1.08 1.62 1.11 1.08 1.09 1.09 1.12 1.06 1.08

 

In the Adh region, Genie, GenieEST and GenieESTHOM predicted a total of 241, 

246 and 258 genes, respectively. In general all three programs scored well in the gene 

finding category (Table 5-1, taken from Reese et al. (2000)). The summary of the results 

is divided into the three categories of Base level, Exon level and Gene level and the 

performance discussed for all three versions of Genie. 

5.2.1 Base level 

The statistical Genie program achieves 96% sensitivity (Table 5-1). The extra 

information from ESTs and homology improves the sensitivity of the statistical Genie 

outcome by 1% to 97%. Most of the bases belonging to coding exons seem to be 
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predicted by Genie, which makes the tool robust and sensitive for a first scan of 

genomes to identify most of the proteome of an organism. 

In specificity one can see a drop in performance for the Genie annotations that use 

homology information (GenieESTHOM) to 83% from 92% for Genie and 91% for 

GenieEST respectively. This is surprising and means that GenieESTHOM uses 

misleading protein homology information to incorrectly predict coding regions that are 

non-coding. This is due to some weaker homology hits that indicate similarities to 

protein-like elements in the DNA. These hits could be due to pseudo-genes or just 

simply to elements that are protein like and were originally derived from real protein 

sequences either through outside integration by transposons, viruses or by evolutionary 

gene duplication and subsequent degeneration through mutations. For thirteen of the 

over-predicted genes it is clear that they overlap transposable elements and therefore all 

thirteen are counted as false positives (see Table 6 for details on the overlapped 

transposons). 

5.2.2 Exon level 

Predicting splice sites, translation initiation and termination is difficult to 

accomplish within a purely computational framework because these sites can be very 

divergent and might be regulated through the over- or under-representation of 

nucleotides in the respective consensus sequences. Prediction is further confounded by 

external enhancer or repressor binding sites that are not well understood. The low rate 

of missed exons of 8.1%, 4.8% and 3.2% for Genie, GenieEST and GenieESTHOM, 

respectively, and the high sensitivity scores of over 70% suggest that Genie finds almost 

all the exons but has more trouble predicting the precise boundaries correctly. GenieEST 

demonstrates significant improvement (sensitivity of 77% compared to 70%) in splice 

site identification, which is to be expected from the EST alignments. Sensitivity 

improves to 79% in GenieESTHOM. This tendency of improved scores for GenieEST 

and GenieESTHOM reverses itself on the specificity scores and wrong exon scores. 

Here the best scores are from the pure statistical Genie program. This might reflect the 

source of data in the std3 reference set of presumed correct gene structures, where quite 

a number of the genes are based on pure GENSCAN (Burge & Karlin, 1997) predictions, 

a program similar in structure and concept to the statistical Genie program. 
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5.2.3 Gene level 

All three versions of Genie have problems assembling complete genes absolutely 

correctly. It is clear that this is a very hard problem, and so we find a sensitivity of 44% 

by GenieEST and GenieESTHOM to be very promising. This is due to a well-balanced 

integration of statistical sensors combined with the strength of sequence similarity 

methods. Specificity is almost equal for Genie and GenieEST but drops for 

GenieESTHOM due to misleading hits to low scoring protein-like elements. The 

relatively low number of wrong genes (10.7%) for the pure statistical Genie implies that 

users can have confidence that predicted genes do correspond, at least in part, to true 

protein coding regions. Nothing in the training of Genie or in the application 

constrained Genie from predicting the transposases and the reverse transcriptases in the 

transposable elements as genes. And, of course, there might also be new genes that 

Genie recognizes that are not yet in the biological annotation from std3 (see Table 5-2 

for details). 

The statistic of split genes and joined genes describes the tendency of a program to 

assemble or split apart genes (see 5.1.6). The split gene numbers range from 1.17 to 

1.15 for the three Genie programs, which indicates a high number of genes that are 

incorrectly split into several separate gene predictions. 15-17% of all genes are split into 

one or more separate gene predictions. The joined gene numbers are much lower (1.08-

1.09) indicating the tendency of Genie to prefer to break up genes instead of joining 

them. Compared to other gene finders both numbers are high, suggesting that other 

programs have better solutions for this problem. 

5.3 Selected Genie annotations in Adh  

In this section we discuss selected predictions or missed predictions from Genie, 

GenieEST, GenieESTHOM and GenieESTPROM compared to the standard sets std1 and 

std3 as well as the behavior of Genie compared to other gene finding systems based on 

the selected examples from the GASP experiment (Reese et al., 2000). 

Figure 5-9 shows the Adh region with all the submitted annotations to the GASP 

experiment, displayed by the program CloneCurator (Harris et al., 1999). As indicated 

in this figure and apparent in all subsequent genomic map figures, the three Genie 
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submissions are grouped together. They are the group of gene finders that are further 

from the genomic sequence axis, next to the protein homology annotations. 

Figure 5-9: The Adh region. A screen shot of the annotated Adh region displayed 
by the CloneCurator program (Harris et al., 1999). It shows the genome annotations 
of all 12 groups in GASP. The main panel shows the computational annotations on 
the forward strand (above axis) and the reverse strand (below axis). Genes located 
on the top half of each map are transcribed from distal to proximal (with respect 
to the telomere of chromosome arm 2L); those on the bottom are transcribed from 
proximal to distal. Right below the axis are the two repeat finding results, followed 
by reference sets from Ashburner et al. (std1 and std3), followed by the twelve 
submissions of gene finding programs, followed by the two protein homology 
programs and eventually, farthest away from the axis, the four promoter 
recognition programs. The left panel gives the color-coded legend for the programs 
and the number of predictions made by the programs. 
 

 

In the "busy" region, Figure 5-10, all three Genie programs predict the first four 

(DS02740.4, DS02740.5, I(2)35Fb, DS02740.8) and the last of the forward strand genes 

(fzy) correctly. The fifth gene (DS02740.10), between 2,752,000 and 2,755,000 is only 
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predicted by GenieEST and GenieESTHOM. This indicates that coding potential is not 

strong enough to distinguish protein coding from intergenic sequence and the additional 

information from EST alignments is necessary to identify the coding regions for this 

gene. Although GenieEST and GenieESTHOM predict the first three exons correctly, 

both miss the 3' splice site for the fourth exon and then select a 3' splice site in a 

different frame so that a stop codon is introduced in the middle of the real fourth exon. 

Thus, both programs miss the last four exons. The coding potentials for these remaining 

four exons are low, which is suggested by the fact that nothing is predicted with the 

statistical Genie. The fifth gene (Sed5) in this region on the forward strand is very 

interesting. While two of the seven gene finding programs agree with the suggested 

annotation in std3, four others predict a longer first coding exon. All three Genie 

programs also predict a longer initial coding exon. This is very interesting due to the 

difficulty determining the exact start of translation of a gene. Most biologists assign the 

first "ATG" in a 5' EST sequence followed by a long open reading frame (ORF) as the 

real start codon, but this is not a strict rule and might be wrong in some cases. 

Figure 5-10: “Busy” region. Annotations for the following known genes described 
in Ashburner et al. (1999) are shown for the region from 2,735,000 - 2,775,000 
(from the left to the right of the map): 
crp (partial, rev.), DS02740.4 (f), DS02740.5 (f), I(2)35Fb (f), heix (r), DS02740.8 
(f), DS02740.9 (r), DS02740.10 (f), anon-35Fa (r), Sed5 (f), cni (r), fzy (f), cact (r). 
 

 

On the reverse strand the complete Genie suite predicts a two-exon gene at 

2,741,000 - 2,742,500, where no gene exists in the std3 reference set. Because this 

prediction agrees with four other gene finding programs and does not overlap any of the 

transposon annotations from Ashburner et al. (1999) this might be a real gene missed in 
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the std3 set. This gene also does not show any protein homology and might therefore be 

a novel gene (see Table 1 for details). Further EST screening and subsequent full-length 

sequencing studies may confirm this hypothesis. All three Genie programs predict the 

next gene (heix) correctly, but the third gene (DS02740.9) on the reverse strand is not 

predicted. The statistical Genie misses the first two exons and introduces a wrong start 

codon. EST sequence information extends the GenieEST and GenieESTHOM 

predictions, correctly identifying the final two and the second exon. But both programs 

miss the initial exon, which is only three (!) basepairs long; the Genie model has a 

minimum length requirement of six bases. The fourth (anon-35Fa) and fifth (cni) genes 

on the reverse strand, both short genes with four and five exons respectively, are both 

predicted completely correctly. The last and longest gene (cact or cactus) in this region 

spans almost 12Kb from 2,762,639 - 2,774,287. The interesting fact about this gene is 

that it has a very long intron between the third and fourth exon spanning 8Kb. While 

most of the other gene finding programs predict this intron correctly, all three Genie 

programs miss this intron and split this gene into two separate genes. This is a typical 

behavior for Genie and is addressed in the next version of the program.  

Genie's overall low false positive rate is demonstrated in the gene poor region, 

shown in Figure 5-11. In this "gene desert" Genie predicts only two genes both on the 

reverse strand. The first is a single exon gene (DS01759.1), which is correctly predicted 

by all three Genie programs. GenieEST and GenieESTHOM both agree on an additional 

gene after this first single exon gene. While other gene finding programs predict single 

exon genes or genes containing two exons here, GenieEST and GenieESTHOM predict a 

gene with four exons. While the exact structure of a possible gene in this region can 

only be wildly speculated, it seems probable that there is a novel gene in this region. 
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Figure 5-11: Gene desert. Annotations for the following known gene described in 
Ashburner et al. are shown for the region from 600,000 - 635,000 (from the left to 
the right of the map): 
DS01759.1 (r). 
 

 

All Genie programs predict the genes Adh and Adhr (Figure 5-12), correctly. This is 

not surprising for GenieEST and GenieESTHOM because there are many ESTs available 

for both genes. But even without EST evidence, Genie predicted these duplicated genes 

correctly. As described in Ashburner et al. both genes are active but are both regulated 

by the same promoter. The integrated promoter prediction (GenieESTPROM) indicates 

a possible TSS at 1,111,271 for the Adhr gene with a reasonable score. It would be 

interesting to verify this prediction by biological experiments. 

Figure 5-12: Adh-Adhr. Annotations for the following known genes described in 
Ashburner et al. are shown for the region from 1,109,500 - 1,112,500 (forward 
strand only) (from the left to the right of the map): 
Adh, Adhr. 
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Analysis of the gene outspread (osp), Figure 5-13, reveals a structural shortcoming 

in the gene model of Genie. The outspread gene, the first gene on the reverse strand, 

contains many very long introns and contains within one of these introns the Adh/Adhr 

gene pair on the opposite strand. In another intron outspread contains one gene 

(DS09219.1) on the same strand and another one like Adh/Adhr on the opposite strand 

(DS07721.1). The current Genie model is built in such a way that it does not allow 

gene(s) within or overlapping other genes either on the same or on the reverse strand. 

Therefore Genie breaks up the outspread gene. The seven 3' exons are predicted 

correctly, but Genie introduces an erroneous first exon to complete this gene prediction. 

The exon at 1,104,419 - 1,104,995 overlaps with a Genie prediction of a single exon 

gene from 1,104,411 to 1,104,965. The correct prediction of most protein coding bases 

in outspread, despite the program’s inability to identify the full gene structure in this 

complex situation, demonstrates its graceful degradation on unusual gene structures and 

may explain its high base-level sensitivity relative to the number of totally correct gene 

predictions.  While the remaining seven 5' exons from outspread are missed, the 

GenieEST and GenieESTHOM versions introduce a wrong three-exon gene in the 

middle of an intron. These EST-based Genie versions are forced to predict this gene 

through a mistaken EST sequence hit and alignment, which belongs to the overlapping 

DS09219.1 gene transcript (see Table 9 for details). 
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Figure 5-13: outspread. Annotations for the following known genes described in 
Ashburner et al. are shown for the region from 1,090,000 - 1,180,000 (from the left 
to the right of the map): 
outspread or osp (r), Adh (f), Adhr (f), DS09219.1 (r), DS07721.1 (f). 
 

 

Additional evidence for the general Genie behavior of splitting genes comes from 

the most complex gene in the Adh region, the Ca-alpha 1D gene (Figure 5-14). This 

long gene with more than 30 exons is incorrectly split by Genie into three separate 

genes. Most of the long exons are covered by Genie predictions, but some of the short 

exons are missed entirely. 

Figure 5-14: Ca-alpha1D. Annotations for the following known gene described in 
Ashburner et al. are shown for the region from 2,617,500 - 2,640,000 (forward 
strand only) (from the left to the right of the map): 
Ca-alpha1D. 
 

 

 
Figure 5-15, the idgf cluster of three genes of the same family (idgf1, idgf2, and 

idgf3), shows the benefit of using EST information and the additional benefit of using 

homology information in Genie. The first intron is missed by the statistical Genie but 

recovered through the additional EST alignment information that spans this intron in 
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GenieEST. Idgf3 is correctly predicted, but GenieESTHOM only entirely correctly 

predicts idgf1.  For idgf1 the protein homology information extends the initial exon to a 

different start codon further upstream. 

Figure 5-15: idgf cluster. Annotations for the following known genes described in 
Ashburner et al. are shown for the region from 2,894,000 - 2,904,000 (forward 
strand only) (from the left to the right of the map): 
idgf1, idgf2, idgf3. 
 

 

5.4 Additional selected observations of the Genie annotation 

In Table 5-2 twenty-six potential novel genes are listed that are predicted by at least 

one of the Genie programs and in addition have evidence through an overlap from at 

least one other gene finding or homology program. The number seems to be very high 

(over 10.1% of a total number of 258 genes predicted from GenieESTHOM), but 

because the process of annotating genes in genomic DNA is so hard, and not all 

programs were available at the time of the annotation (Ashburner et al., 1999), I believe 

that at least the majority of these predictions are real genes. All predictions that overlap 

with an annotated transposable element were removed from this list. 
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Table 5-2: Predicted novel genes by Genie. Twenty-six Genie gene predictions that 
have no overlaps to any gene structure in std3 are listed. "Strand" indicates the 
strand on which the predicted genes are located. The strand is consistent with the 
annotation in Ashburner et al.: "Genes on the top [forward strand] of each map 
are transcribed from distal to proximal (with respect to the telomere of 
chromosome arm 2L); those on the bottom [reverse strand] are transcribed from 
proximal to distal". "Begin" and "End" gene coordinates note the first and last 
base of the predicted coding gene region by Genie. Genie, GenieEST and 
GenieESTHOM label the Genie program variant. "Other gene finder hits" lists the 
count of how often this newly predicted gene is also overlapped by one or more of 
the other six gene finding programs from GASP. "Homology hits" marks the 
count of how often a newly predicted gene overlaps any homology hits from GASP. 
 

Strand Begin End Genie Genie
EST 

Genie
EST 

HOM 

Other 
gene 

finder 
hits 

Homol
ogy 
hits 

Comm
ents 

F 21,599 21,988 X - - 5 0  
F 131,015 131,248 X X X 5 0  
F 267,633 268,061 X X X 1 0  
R 306,476 306,985 X X X 1 0  
R 328,048 328,733 X X X 4 0  
F 329,808 331,184 X X X 6 0  
F 403,468 405,391 X X X 5 2  
F 408,759 412,000 X X X 6 2  
R 426,746 427,525 X X X 6 0  
R 603,442 604,456 - X X 5 0  
F 754,773 754,919 X X X 2 0  
R 846,339 845,892 - X X 3 0  
R 870,684 870,866 X X X 4 0  
R 910,572 911,055 X X X 5 0  
F 1,115,807 1,116,493 X X X 2 0  
F 1,117,474 1,117,608 X X X 3 0  
R 1,263,535 1,264,137 - X X 3 0  
R 1,365,077 1,365,732 X X X 4 0  
R 1,850,650 1,851,240 X X X 4 0  
F 2,453,955 2,454,498 - X X 4 0  
F 2,580,916 2,581,059 X X X 1 0 FP (?) 
R 2,584,165 2,584,914 - X X 3 0  
R 2,741,387 2,742,230 X X X 4 0  
R 2,762,639 2,774,287 X X X 2 0  
F 2,779,268 2,779,566 X X X 2 0  
F 2,843,324 2,843,386 X X X 1 0 FP (?) 
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Table 5-3 lists the nineteen genes from the reference std3 set for which no overlap of a 

Genie prediction exists. Thus, less than 10% of the annotated genes in std3 are missed 

by Genie. The individual submission scores for missed genes are as low as 4.6%.  Nine 

of these std3 annotations are solely based on predictions from the human version of 

GENSCAN (Burge & Karlin, 1997) and/or Genefinder (Green, 1995) predictions, the two 

gene finding programs used for the annotations in Ashburner et al.. For an additional six 

of these genes Ashburner et al. augmented their evidence with BLAST hits with low P-

values. For Mst35Bb there exists a very reliable cDNA alignment, it is definitely a real 

missed gene. The remaining three genes (DS07721.1, DS003192.3, DS003192.4) are all 

based on cDNA alignments. None of them is predicted by any gene finding program 

and for one, DS003192.4, there are two homology annotations but on the opposite 

sequence strand! Therefore these alignments are very questionable and might be the 

result of typical cDNA cloning artifacts. 

To summarize the analysis of the nineteen over-predicted genes it is possible that 

the missed gene prediction rate of Genie is below the noted 4.6% and that very few real 

genes are missed. This is believed to be also true for some of the predictions of the other 

programs. 
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Table 5-3: Genes missed by Genie. The gene names from Ashburner et al. (1999) 
are listed. In addition, the evidence for that gene annotation in that paper is given. 
The "Begin" and "End" gene coordinates are from the std3 annotations. In 
addition, the number of overlaps by other gene finders and the two homology 
programs are listed. 

Strand Begin End Other 
gene 

finder 
hits 

Homo
logy 
hits 

Gene names 
in 

Ashburner 
et al. (1999) 

Evidence in 
Ashburner et al. 

(1999) 

Comments 

R 230,985 240,152 3 0 DS08249.5 Gene pred. only - 

F 498,520 507,581 2 0 DS01514.3 Gene pred. only - 

R 523,395 525,283 3 0 DS05899.7 Gene pred. and low 
P- value BLAST hit 

- 

R 533,592 536,913 3 0 DS05899.6 Gene pred. only - 

F 1,152,128 1,152,385 0 0 DS07721.1 cDNA (?) Suspicious 
annotation 

R 1,285,030 1,286,199 3 1 DS06874.6 Gene pred. and low 
P-value BLAST hit 

- 

F 1,300,469 1,315,922 3 0 DS06874.7 Gene pred. only - 

R 1,368,793 1,369,282 5 0 Mst35Bb cDNA - 

F 1,484,701 1,489,834 2 0 DS00929.16 Gene pred. only Suspicious 
annotation 

R 1,520,808 1,521,371 1 1 DS00929.7 Gene pred. and low 
P-value BLAST hit 

Overlaps gene 
on opposite 
strand 

F 1,628,242 1,628,412 0 0 DS003192.3 cDNA (?) Very suspicious 
annotation 

R 1,663,026 1,663,163 0 (2 
oppo. 
stran

d) 

DS003192.4 cDNA (?) Very suspicious 
annotation 

R 1,782,412 1,786,409 2 0 Ms(2)35Ci  Gene pred. only - 

R 1,875,987 1,895,879 5 0 DS03023.4 Gene pred. only Gene on 
opposite strand 

R 2,109,315 2,113,209 4 0 BACR44L22 Gene pred. only - 

F 2,158,476 2,159,460 3 2 DS07108.5 Gene pred. and low 
P-value BLAST hit 

- 

F 2,236,081 2,241,876 3 0 DS02252.3 Gene pred. and low 
P-value BLAST hit 

5,000 bp single 
exon gene 

R 2,286,435 2,287,433 3 0 DS02252.4 Gene pred. and low 
P-value BLAST hit 

- 

F 2,398,367 2,410,394 5 0 DS07486.5 Gene pred. only - 
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One of the biggest problems with the Genie programs in annotating Adh was joined 

and split genes. Table 5-4 and Table 5-5 show that Genie is parameterized to favor 

splitting genes versus joining genes. Only nine Genie annotations span two or more std3 

genes (Joined genes) while nineteen std3 genes are split into separate Genie predicted 

genes (Split genes). The problem of joining genes is due to the difficulty of identifying 

the ends and starts of genes that don't encompass strong statistical signals. Careful 

analysis of the split genes, on the other hand, showed that the length distribution of 

introns - a geometric distribution - which favors short introns, is the reason for so many 

split genes (data not shown). Another behavior related to the same problem of the length 

distributions of introns is the general tendency of Genie to introduce erroneous exons 

within otherwise long introns. Table 5-6 lists eleven typical examples. 

Table 5-4: Joined genes by Genie. All predictions in which Genie joins one or more 
genes from std3 are listed. The "Begin" and "End" gene coordinates are from the 
Genie predictions. The last two columns list the number of genes joined and their 
respective names. 
 

Strand Begin End Genie Genie 
EST 

Genie 
EST 

HOM 

# of 
joined 
genes 

Names of 
joined genes 

R 336,668 339,013 X X X 2 DS00941.11, 
DS00941.12 

F 341,713 343,984 X X X 2 DS00941.14, 
DS00941.15 

F 454,701 458,802 X X X 2 DS00180.5, 
DS00180.12 

R 458,837 463,657 X X X 2 DS00180.7, 
DS00180.8 

F 471,109 476,389 X X - 2 DS00180.11, 
DS00180.14 

R 839,712 843,808 X X X 3 DS01068.10, 
DS01068.4, 
DS01068.5 

F 1,599,218 1,607,306 X X X 2 DS04929.3, stc 
R 2,102,169 2,104,442 - - X 2 BACR44L22.8, 

BACcr44L22.2 
R 2,786,019 2,792,601 X X X 3 DS02740.18, 

DS02740.19, 
DS09218.1 
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Table 5-5: Split genes by Genie. All std3 gene annotations that are split into two or 
more genes by all three Genie programs. The "Begin" and "End" gene coordinates 
are from the std3 annotations. The causes of splitting, when known, are noted in 
the Comments column. 

Strand Begin End # of split 
genes 

Comments 

F 45,358 130,409 5 Gene on opposite strand 
F 373,286 391,500 3  
F 445,189 456,317 3  
R 477,171 487,236 2  
F 568,986 575,533 2  
R 679,874 691,416 2  
F 757,457 821,487 4 1 gene on same strand 
R 1,094,414 1,182,415 2 2 genes on opposite strand 
R 1,398,183 1,413,067 2  
F 1,506,022 1,521,842 2 Gene on opposite strand 
F 1,558,915 1,561,694 2  
F 1,565,296 1,585,380 3  
R 1,653,146 1,667,970 2  
R 1,718,580 1,737,780 2  
R 1,747,063 1,752,780 2  
R 2,220,563 2,224,367 2  
F 2,463,394 2,488,789 2  
F 2,619,967 2,639,006 3  
R 2,714,362 2,736,449 2  
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Table 5-6: Missed long intron(s) by Genie. Genes that have long introns that are 
missed by any Genie program are listed and it is indicated which program misses 
them. The "Begin" and "End" coordinates are from the std3 annotations. 
 

Strand Begin End Genie Genie 
EST 

Genie 
EST 

HOM 

R 268,751 273,483 X X X 
R 654,984 667,105 X X X 
F 828,047 833,672 X X X 
R 880,856 901,495 X X X 
R 1,051,748 1,057,314 - - X 
R 1,271,377 1,276,359 X X X 
R 1,421,921 1,432,223 X X X 
F 1,974,488 1,983,855 X X X 
F 2,040,123 2,057,901 X X X 
F 2,505,534 2,530,156 X X X 
F 2,683,427 2,694,719 X X X 

 

A simple but serious oversight in the GASP experiment the poor treatment of 

transposable elements in the Adh region. Ashburner et al. found seventeen transposable 

elements, which consist of repetitive elements but also include protein coding like 

regions, including long open reading frames, predominantly for the transposase and the 

reverse transcriptase proteins. As expected, Genie cannot distinguish these transposon 

genes from protein coding genes and therefore predicts thirteen of the existing 

seventeen as protein-coding genes (see Table 5-7 for a list of predicted transposons). In 

particular, GenieESTHOM predicts many of the transposable elements to be coding 

genes because transposable elements contain protein sequences that result in strong 

protein alignments. While the statistical Genie version only overlaps three of the 

seventeen transposable elements, GenieESTHOM predictions overlap thirteen. These 

transposon hits contribute to an increased false positive rate, worse wrong exon and 

wrong gene scores, and lower overall specificity in Table 5-1. 



  5-99 

Table 5-7: Transposable elements. Transposable elements incorrectly labeled as 
real gene by Genie. The transposable elements that have an overlapped prediction 
by Genie are listed. The "Begin" and "End" coordinates are the transposable 
element coordinates from the Ashburner et al. (1999) paper. 
 

Str
and 

Begin End Genie Genie
EST 

Genie
EST 

HOM 

Other 
gene 

finder 
hits 

Homo
logy 
hits 

Transposon 
name 

F 55,422 58,941 - - X 4 2 Fw 
R 93,549 94,119 X X X 3 1 G 
R 255,612 256,662 - - X 1 1 Doc 
R 959,378 962,797 - - X 2 1 Doc 
R 1,136,806 1,145,466 - X X 5 0 Roo 
R 1,293,597 1,298,741 - X X 5 1 Copia 
F 1,474,114 1,481,634 X (2 

genes) 
- - 3 2 Yoyo 

F 1,935,760 1,943,170 X X X 3 2 Blood 
F 2,076,116 2,083,110 - - X 3 2 297 
F 2,174,330 2,176,188 - - X 1 1 Copia-like 
F 2,177,045 2,178,655 - - X 3 2 Copia-like 
F 2,590,477 2,595,625 - - X 5 2 Copia 
F 2,603,050 2,610,046 - - X 2 1 297 

 

In Table 5-8 five gene annotations are reported based on Genie predictions that 

strongly indicate either a different gene structure than reported in std3 or a potentially 

new alternative splicing form for the listed genes. The underlying evidence, besides the 

Genie predictions, comes from other gene finding predictions as well as from EST 

sequence alignments.  
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Table 5-8: Alternative splicing forms predicted by Genie. Genes in std3 that might 
have an alternative gene structure as predicted by Genie and other gene finders 
are listed. 
 

Str
an
d 

Annot
ations 

Begin End Genie Genie
EST 

Genie
EST 

HOM 

Other 
gene 

finder 
hits 

Gene 
name 

Comments 

std3 159,578 163,527 X   4 

F 
Genie 159,578 164,417 X X X 5 

DS01368.1 EST 
alignment 
verifies last 
additional 
intron 

std3 325,240 326,379     
R 

Genie 325,240 326,822 X X X 3 
MtPolB Additional 

first exon 

std3 1,334,780 1,338,785 X   5 
R Genie 1,334,780 1,338,785  X X 1 

DS03431.1 Missed third 
exon, (EST 
verified) 

Std3 1,371,813 1,372,351    2 

R Genie 1,371,868 1,372,213  X X 3 
Mst35Bb Longer 1st 

exon and 
shorter last 
exon 

std3 1,493,680 1,496,198    1 

F Genie 1,495,484 1,496,198 X X X 4 
DS00929.1 Wrong first 

exon and 
EST intron 
in 2nd exon 

 

Through evidence from high scoring Genie predictions, EST alignments and the 

other GASP annotation teams, eight gene entries in the std3 reference set seem to be 

very suspicious. In Table 5-9, predictions from other programs are only listed if they 

support the suggested corrected gene structure annotated by Genie. Careful cDNA 

alignment and additional full-length cDNA sequencing should shed light on these cases 

in the future. 
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Table 5-9: Possible “incorrect” annotations from std3. Genes from the std3 
annotations are listed, for which multiple evidence from Genie and other programs 
exists, implying “incorrect” annotations. The "Begin" and "End" coordinates are 
from the std3 annotations. The evidence for the annotation in std3 is given as noted 
in Ashburner et al.. 
 

Str
an
d 

Begin End Ge
nie 

Gen 
ie 

EST 

Gen 
ie 

EST 
HOM 

Oth
er 

Ho
mol
ogy 
hits 

Gene 
name 

Evidence 
in 

Ashburn
er et al. 

Evidence 
from 

predictions 

R 213,507 217,188 X X X 7 1 DS08249.3 Gene 
pred. only 

Last exon 
questionable 

F 281,649 284,052 X X X 6 2 D00797.5 cDNA 
(partial?) 

10 leading 
exons missing 

R 941,115 944,598 X X X 4 - DS08340.1 Gene 
pred. only 

4 extra 3' 
UTR exons 

F 1,205,439 1,213,325 X X X 5 - DS07721.3 Gene 
pred. only 

First exon and 
last 3 exons 
questionable 

R 1,371,813 1,372,351 - X X 3 - TFIIS Known 
gene 

Longer first 
and shorter 
last exon 

R 1,549,142 1,549,933 X X X 6 - DS07295.4 Gene 
pred. only 

Initial exon 
and first 
intron 
verifired by 
EST missing 

F 1,721,863 1,728,736 X - - 1 - DS07295.4 Gene 
pred. only 

At least first 7 
exons very 
questionable 

R 1,913,374 1,914,948 X X X 6 1 wor Gene 
pred. and 
BLAST 
homology
hits 

Additional 
first exon 
verfied by 
EST 

 

5.5 Promoter prediction results in Genie 

A total of 234 transcription start site predictions were produced by the integration 

of NNPP into the statistical Genie version, GeniePROM, and 237 TSS's were predicted 

by the EST refined version of Genie, GenieESTPROM. The success rate of the promoter 

assignment of about 30% (27.6% for GeniePROM and 32.9% for GenieESTPROM) is in 

the same order as other promoter predictions from GASP, but indicates that promoter 

recognition is very difficult due to the complex initiation process (see Table 5-10 taken 
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from Reese et al. (2000)). Because Genie's promoter assignments are in the context of 

gene identification and as such are modeled in the complete generalized HMM to occur 

upstream of the start codon, the false positive rate is low. For the evaluation of 856,119 

negative bases the rate is 1/14,760 for GeniePROM and 1/16,786 for GenieESTPROM, 

respectively. It is interesting to recognize that the EST integration improves promoter 

identification, which might be due to an extension of the 5' region of a gene using 

information from a 5' EST sequence. Because of the integration into a gene finding 

system the numbers should be compared with the similar MAGPIE system and it can be 

seen that while GenieESTPROM misses two more promoters (31 versus 33) its false 

positive rate is lower (1/16,786 versus 1/14,760). 

In addition, in Table 5-10 the prediction statistics for the pure NNPP program are 

added without the integration in Genie with thresholds of 0.97 and 0.90. At a threshold 

of 0.97 the number of 35 identified TSS's is very similar to the Genie integrated system 

GeniePROM of 30 TSS predictions, but the false positive rate is seven times higher - 

1/2,416 bp versus 1/14,710 bp. If one is interested in getting as many correct predictions 

as possible the only solution is to run NNPP with a low threshold (t=0.9) to predict 

more than 50% of the real TSS's. Neither GeniePROM nor GenieESTPROM nr any 

other program tested in GASP is able to predict close to this number. Nevertheless, the 

high specificity of the promoter prediction systems integrated in gene finding systems is 

obviously due to the context information: all promoter predictions within gene 

predictions are ruled out in advance, and the location of the possible start codon 

provides the system with a good initial guess as to where to look for a promoter. 
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Table 5-10: GASP evaluation of promoter prediction programs. We show the 
number and percentage of identified transcription start sites in comparison to the 
false positive rate which is given for two different sets of regions: (a) the "likely" 
region for a transcription start site plus the downstream region belonging to the 
same annotation; (b) the same region plus half the distance to the neighboring 
genes upstream and downstream (taken from the std3 annotation). 
 

System Name Identified 
TSS 

Rate of false predictions 
in region (a) (853,180 

bases) 

Rate of predictions in 
region (b) (2,570,232 

bases) 

NNPP (t=0.97) 35 (38.0 %) 1/2,416 1/1,019 

NNPP (t=0.90) 55 (53.2 %) 1/928 1/404 

CoreInspector 1 (1 %) 1/853,180 1/514,046 

MCPromoter 
V1.1 

26 (28.2 %) 1/2,633 1/2,537 

MCPromoter 
V2.0 

31 (33.6 %) 1/2,437 1/2,323 

GeniePROM 25 (27.1 %) 1/14,710 1/28,879 

GenieESTPROM 30 (32.6 %) 1/16,729 1/29,542 

MAGPIE 33 (35.8 %) 1/14,968 1/16,370 
 

5.6 Genie improvements after GASP 

The excellent test of Genie in the GASP experiment helped further improvement 

and fine-tuning of the system to produce even more reliable gene annotations for the 

entire genome of Drosophila melanogaster. 

The oversight of the non-treatment of transposable elements that resulted in many 

false positive predictions in each performance category – many coding regions in 

transposable elements were mistaken as genes, especially when using protein homology 

– was corrected by a simple pre-screening method for transposable elements. This 

prescreening masked out these transposon regions and eliminated them from being 

predicted by Genie. 

Another structural mistake in the EST based Genie gene models, GenieEST and 

GenieESTHOM, resulted in erroneous predictions when EST evidence identified introns 

between non-coding exons (Table 5-11 gives a list of these false predicted genes in 
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Adh). This happened because Genie's exon and intron models were exclusively based on 

coding region of genes and any predicted 5' or 3' UTR intron from an EST alignment 

was mistakenly predicted as a coding exon. For the Genie application to the entire 

genome the underlying GHMM gene model was changed by adding the notion of an 

intron in an UTR region.  

Table 5-11: Erroneous EST UTR predictions by Genie. Coding gene predictions by 
GenieEST and GenieESTHOM that are either complete over-predictions or 
partially wrong by extending the coding regions into the 5'/3' UTR due to a wrong 
underlying gene model structure for non-coding ESTs (see text for details). The 
"Begin" and "End" coordinates are the GenieEST and GenieESTHOM 
predictions. 

Strand Begin End 

R 40,843 43,076 
R 346,994 356,311 
R 393,573 398,794 
F 507,364 512,758 
F 849,268 851,919 
R 1,372,338 1,373,546 
R 1,756,026 1,761,674 
F 2,491,469 2,497,464 
R 2,698,932 2,706,347 
R 2,709,485 2,711,209 

 

Another improvement in the underlying gene model allows it to combine gene 

information from 5' and 3' EST sequences that were sequenced from the same cDNA 

clone - hopefully a full-length clone. This knowledge can be used in gene finding to 

restrict the gene boundaries: the gene start and end. This was modeled by constraining 

the GHMM framework to refuse to predict intergenic regions between a 5' and 3' 

aligned EST sequence from the same cDNA clone. 
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Chapter 6 Discussion 

In this thesis I have described two computational methods both rooted in the field 

of machine learning. I have used these methods to model structural and sequence 

composition properties of the Drosophila melanogaster genome and I have applied both 

of these models to the problem of transcription start prediction and gene identification 

in the complete genome of Drosophila melanogaster. 

The first tool is an artificial neural network model using a time-delay network 

architecture. This network has two feature layers: one for the TATA box and one for the 

Inr (initiator). The output of both feature layers is combined in a time-delay neural 

network. I have shown that such a neural network detects the TATA box and the Inr and 

is insensitive to their relative spacing and is therefore an excellent model for the 

compositional sequence properties of a eukaryotic core promoter region. The 

discriminative ability of such a model for the short core promoter region of -40 to +11 

bases spanning the transcription start site is so strong that this model can be used to 

predict an entire promoter in genomic DNA. These results show that the highest 

information content in a promoter region exists in the core promoter region. 

The NNPP computer program implements the time-delay neural network model. 

The program is able to predict over 70% of transcription start sites in genomic DNA 

when used with the default parameters. The false positive rate calculated on the Adh 

region in Drosophila melanogaster is 1/ 547 bases. The Matthew's correlation 

coefficient (Matthews, 1975) is 0.58. 30% of all promoter sequences remain undetected 

and this is probably due to the non-local structure of the promoter region, where 

initiation control elements can occur at positions many kilobases distant from the 

transcription start site. In a published comparison of eukaryotic promoter prediction 

tools (Fickett & Hatzigeorgiou, 1997) the NNPP program performed better than other 

similar programs. 
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The NNPP program can easily be extended to incorporate novel information as it 

becomes available. Other known promoter elements such as the CAAT box, GC box, 

DPE (downstream promoter element; so far known to exist only in Drosophila), and 

conserved transcription factor binding sites can also be used within the existing 

framework. The extended parameter space of such an extended model would require 

more data for training. 

The positive results obtained using the time delay architecture will hopefully lead 

to more widespread application of neural networks to similarly complex problems in 

molecular biology, such as the detection of splice sites and protein-protein interaction 

motifs. 

For the application to complete genome annotations the NNPP code is integrated 

into the Genie system as described in Section 4.4.3. Such integration is necessary to 

reduce the false positive rate that naturally occurs by modeling complex systems like 

promoters. Results of the integrated program with standard setting show a recognition 

rate of 32.6% with a more “realistic” false positive rate of 1 false prediction in 16,729 

bases. 

Since I made the NNPP program available on the World Wide Web it has been 

widely used in the scientific community to hypothesize about potential transcription 

start sites. One of many applications of NNPP is presented as an example (experimental 

results provided by Roehrig (2000), personal communication):  

The C. elegans gene unc-86 encodes a POU IV class transcription factor, which is 

expressed exclusively in the nervous system. There are currently no ESTs available for 

unc-86, since the gene appears to be expressed at low abundance (the mRNA is not 

detectable in Northern blot analysis). This has hampered the identification of potential 

alternative splice sites and the transcription start sites. The ab initio gene finder 

“Genefinder” (Green, 1995) does not predict the 5' region of the CDS correctly. 5'-

RACE studies (Roehrig, 2000) revealed that the first exon codes for only three amino 

acids, making its ab initio prediction very difficult. Yet, it remained uncertain whether 

the amplified products in the 5'-RACE truly represented the 5'-end of the mRNA. In 

order to address this problem, the unc-86 genomic sequence was analyzed in silico 

using NNPP. 
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NNPP predicted the transcription start site to be approximately 120 bp upstream of 

the site identified in the 5'-RACE experiments. This predicted TSS would allow 

translation to start at an ATG codon 45 bases upstream of the TSS previously predicted 

by RACE. This would add another 15 amino acids to the N-terminus of the unc-86 

protein. This prediction was experimentally supported by the amplification of a cDNA 

that included the additional 5' region predicted by NNPP. In parallel, sequence analysis 

from the closely related nematode species C. briggsae revealed that the DNA sequence 

encoding the putative additional 15 amino acids is conserved, while further upstream of 

the NNPP-predicted TSS, the sequence is not conserved. Finally, primers were selected 

from the sequence upstream of the NNPP predicted TSS and they failed to amplify a 

cDNA product in RT-PCR experiments (Roehrig (2000), personal communication). 

Both Genefinder and Genie predicted the remaining 3' gene structure in accordance 

with the experimental cDNA alignment data. Sequence comparison with the C. briggsae 

sequence does not hint at alternatively spliced exons (Roehrig (2000), personal 

communication). 

This example demonstrates how useful a program like NNPP can be the right 

context. It is clear that a program cannot substitute for the final experimental proof but 

the example shows that it can give direction and guidance for such experiments to verify 

computational predictions. 

I believe Drosophila melanogaster is a good model organism to study transcription. 

To get a better understanding of transcription in general, better and more complete data 

sets are needed. The most comprehensive collection of promoters, the EPD database 

(version 61_1), contains a collection of only 807 experimentally verified non-redundant 

eukaryotic POL II promoters, 108 of which were found in Drosophila. Initial efforts at 

the BDGP and at Harvard University have extended this set to a total of 265 (Ohler, 

1999) annotated promoters with experimentally verified TSS's. This is still a very small 

number considering a predicted total number of at least 13,000 Drosophila genes 

(Rubin et al., 2000). It means that for only 2.04% of the total genes there exist 

experimentally verified and annotated promoters. An extended set could be generated 

using for example, the RACE protocol above described in combination with in silico 

methods such as NNPP. 
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The second tool presented in this thesis is a probabilistic model of the gene 

structure in Drosophila. The main accomplishment was the development of a new gene 

identification program specifically for Drosophila, called Genie, which has several 

significant advantages over existing gene finding programs. Most importantly, the 

accuracy of Genie is higher than for any other available method when tested on large 

genomic sequences such as the Adh sequence, as was demonstrated in the GASP 

experiment. Genie shows a sensitivity and specificity at the nucleotide level of 97 % 

and 92%, respectively. It predicts splice sites and start and stop codons with high 

confidence. For example, the program identifies 79% of exons in genomic sequence 

accurately. This high accuracy is the result of the ability to use cDNA sequence 

alignments to verify the exact boundaries between exons and introns and between gene 

assemblies. 

The Genie system successfully integrates a combination of ab initio gene finding 

signal and content models, EST/cDNA alignments, protein homology alignment 

information and promoter signal models specific to the Drosophila genome. Genie is 

most similar to GENSCAN (Burge & Karlin, 1998) in its overall architecture. It is, like 

GENSCAN, a probabilistic model that uses a generalized hidden Markov model of gene 

structure (in the GENSCAN literature this is called “semi-hidden” Markov model). 

Initial developments of both programs were done very much in parallel and were driven 

by sharing concepts and training as well as testing data. While GENSCAN includes 

submodels for poly-adenylation sites and signal peptides, these signals are not 

integrated in Genie, because they did not show a statistical significant improvement in 

accuracy. The main difference between GENSCAN and Genie is the integration of EST 

sequence alignments and protein homology information in Genie. Furthermore, we 

performed extensive parameter optimization specifically for use in Drosophila. The 

optimization included, among other things, collecting additional Drosophila mRNA 

sequences, adjusting for the specific intron length distribution and pre-masking for 

known transposable elements. Due to the lack of the availability of a Drosophila version 

of the GENSCAN program, performance accuracy could only be compared to an older 

version as part of the MAGPIE submission for the GASP experiment. This comparison 

showed a significant improvement of the GENSCAN results by Genie. 

The limited accuracy of gene assembly is problematic in Genie's model, and I 

believe it is true for most of the gene finding systems. While the base level predictions 
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and exon level predictions are very good, the results for gene assemblies are not (this is 

partially reflected in the scores for joined and split genes). Because the GASP 

experiment showed that splitting genes was a major problem, the generalized Hidden 

Markov Model (GHMM) framework was extended to integrate information about the 

pairing of 5’ and 3’ EST sequences from the same clone.  This change improved gene 

assembly but is of no use if no EST coverage exists (at the current time the total gene 

coverage in the Drosophila EST database of paired 5' and 3' ESTs is estimated to be 

between 50-60% (See the BDGP EST project)). 

A second limitation of the Genie system is the inability to detect genes within the 

introns of other genes. The limited number of examples of Drosophila overlapping 

genes has been a significant impediment.  It will be interesting to see how EST 

alignment information might be helpful for predicting genes within genes but it still 

remains a challenging problem. 

In order to fully assess the Genie predictions and in particular the 26 novel 

predictions in the Adh region discussed in Section 5.4, the “correct answer”, in the case 

of the GASP experiment the annotations in the Adh region, must be improved. Only 

extensive full-length cDNA sequencing can accomplish this. A possible approach would 

be to design primers from predicted exons/genes in the genomic sequence and then use 

hybridization technologies to screen for the corresponding cDNA from multiple cDNA 

libraries. Initial experiments are underway to verify these additional ab initio 

predictions from the Adh region as a result of GASP experiment (Rubin, 2000). 

Genie was developed to be used for gene identification in the annotation process of 

the entire genome of Drosophila melanogaster. In collaboration between the Berkeley 

Drosophila Genome Project and Celera, Inc., the genome of Drosophila melanogaster 

has been sequenced (Adams et al., 2000; Rubin et al., 2000). GenieEST, the best 

performing version of Genie in GASP, was successfully run on a 10-fold sequence 

assembly of the complete genomic sequence. In total, Genie predicted 13,189 genes, 

while the other ab initio program GENSCAN (see discussion above (Burge & Karlin, 

1997)) predicted 17,464 genes (Rubin et al., 2000). Based on the results from the GASP 

experiment, where GENSCAN was used as a part of the MAGPIE system, we believe 

that the lower number predicted by Genie is more accurate. In Adh, Ashburner et al. 

(1999) annotated a total of 218 genes, which was later adjusted to 222 genes in a second 
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round of analysis during GASP. GENSCAN predicted 468 genes while Genie predicted 

only 246 genes for this region. The main differences are discussed above. The GASP 

experiment showed that due to the non-optimized parameters in GENSCAN, more over-

predictions occur, and that the Genie predictions are closer to the experimentally 

verified number of 222.  

Extrapolating from the Adh region to a complete genome size of 110 Mbases gives 

a very conservative estimate of 9,293 total genes. The difference between this lower 

number and the total predicted number of 13,189 might be due to sequencing errors, 

sequence gaps in the 10 fold-assembly or an atypical lower gene frequency in the Adh 

region. 

Preliminary results from observations during the annotation process for the 

Drosophila genome in November 1999 show that the Genie predictions are very reliable 

and can very often be verified by additional sequence alignment information from ESTs 

and homologous proteins. Additional evidence for the accuracy and completeness of 

Genie is given by the observed high percentage of expected genes for Drosophila that 

were found in the predicted protein set by Genie (see Rubin et al (2000) for more 

details). 
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Chapter 7 Conclusion 

The goal to develop an accurate and robust system for the identification of 

Drosophila genes and to successfully apply the system in the annotation process of the 

complete genome of Drosophila melanogaster has been achieved. Furthermore, we built 

a powerful program for predicting and studying transcription start sites. 

Over the years, Genie has become a robust gene finding system. It is highly 

modular and allows for automatic training for new organisms, and the integration of 

new external sensor models; It runs fully automatically for entire genomes and the 

running time is reasonable when applied to complete genomes such as the human 

genome. The statistical framework allows for a probabilistic assessment of individual 

predicted features and complete gene predictions. The concept of a generalized hidden 

Markov model first introduced in early Genie related publications (Kulp et al., 1996; 

Reese et al., 1997), is very powerful, as can be seen in the high performance scores of 

all systems based on GHMMs in the GASP experiment. 

The GASP experiment provided an objective assessment of current approaches to 

gene prediction, which proved to be very useful for the final complete genome 

annotation process. The main conclusions from the experiment are that current methods 

of gene predictions have tremendously improved and that they are very useful for 

genome scale annotations. However, high quality annotations also depend on a solid 

understanding of the organism in question (e.g., recognizing and handling transposons). 

Experiments such as GASP are essential for the continued progress of automated 

annotation methods. They provide benchmarks with which new technologies can be 

evaluated and selected. 

Beyond the identification of gene structure is the determination of gene function.  

Most of the existing prototypes for such systems are based on sequence homologies. 
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While this is a good starting point it is definitely not sufficient. The state of the art for 

predicting function for protein sequences uses the protein’s three-dimensional structure, 

but the difficulty of accurately predicting three-dimensional structure from primary 

sequences makes applying these techniques on complete genomes problematic. The new 

field of structural genomics will hopefully give more answers in these areas. 

In summary, both models and their implementations, NNPP and Genie, can be 

considered a step forward towards the goal of identifying all Drosophila genes. In a 

more general context they can be viewed as tools that empower scientists to reach a 

better understanding of the fundamental complex biological processes involved in gene 

regulation and gene localization. 
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Chapter 8 Appendices 

Appendix A URLs 

Gene data sets: http://www.fruitfly.org/sequence/drosophila-datasets.html 

http://www.fruitfly.org/sequence/human-datasets.html 

NNPP:  http://www.fruitfly.org/seq_tools/promoter.html 

Genie:  http://www.fruitfly.org/seq_tools/genie.html 

NNSplice: http://www.fruitfly.org/seq_tools/splice.html 

GASP:  http://www.fruitfly.org/GASP1 
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Appendix B Promoter data sets 

429 unrelated eukaryotic promoters taken from the Eukaryotic Promoter Database 
(EPD;(Bucher, 1990) release 41. The EPD accession numbers are listed. 
 
BTBPTIG1_16066 BTHOR01_07102 BTKER4_15028 BTKER6B_11082 BTKERAIB_15027 BTKERIA1_15026 
BTPGPHA1_11126 BTPPT1_11122 BTPROB_28006 BTPTHG_30046 BTSIG1_16067 CCTPMY01_25016 
CMHIST34_33027 CMHIST34_33028 FSPRC2A_17043 GDCOLG2_30050 GDCTNT_24007 GDHMG141_31008 
GG5ACT1_11079 GGACHRA_15042 GGACTAC_11078 GGACTI_07059 GGAL07_07081 GGALASY1_14048 
GGALDB_17060 GGC1A201_07066 GGCAII12_23006 GGCALB_07085 GGCAMP_24005 GGCRYDS_11086 
GGFERH_16048 GGGADPHE_30015 GGGHRA05_30049 GGGL02_07075 GGGL03_33032 GGGL04_11095 
GGH2A2B_33016 GGH2A2B_33017 GGH2AF_33018 GGH2B1_24013 GGH33B_33020 GGHBBR2_07076 
GGHI03_11067 GGHIS1_07050 GGHISH1_11065 GGINS1_07110 GGKERC_07068 GGLYSX_07087 
GGMY04_07064 GGMYC_15048 GGMYHE_11081 GGOV03_07082 GGOVO1_07086 GGP4HB01_30040 
GGPGR_25037 GGRIBPRL5_41004 GGRIG_37012 GGRPL30_41005 GGRPL37A_41006 GGTIMA_30016 
GGTROSS1_25018 GGU4BX_17040 GGVI01_07089 GGVIM1_25002 GGVL01_07090 HGGL01_07070 
HSA1ATCA_17090 HSA1ATP_17092 HSABL1B_26030 HSABLA_26032 HSACTBPR_17045 HSADAG1_11113 
HSADPRF01_41009 HSADPRF1_39001 HSALBEX1_16042 HSALDA1_26015 HSALDA1_26017 HSALDB1_11119 
HSALDH01_23004 HSAMYAGA_30065 HSANFG1_11132 HSAPB01_26028 HSAPOA2_11088 HSAPOAI1_30021 
HSAPOC2G_17051 HSAPOE4_36007 HSARG1_30054 HSASG5E_11114 HSATH2_30079 HSBCL2A_27006 
HSBCL2A_27007 HSBSF2_17080 HSBSF2_17081 HSC4BINDC_40004 HSC5GN_40002 HSCAIII1_26020 
HSCEATG_36009 HSCF8N_14077 HSCFOS_11145 HSCN2A_15034 HSCNTFG1_33035 HSCOL301_25041 
HSCOLA1I_25034 HSCPB1_25084 HSCPG1_25086 HSCRP01_39004 HSCRPGA_26029 HSCYP450_11121 
HSDAFC1_40003 HSDESMIN_33011 HSDHFR01_07056 HSEGFA1_15045 HSEGFA1_15046 HSEGFRG_15043 
HSEGFRG_15044 HSENKE_07107 HSEPKER_24002 HSERR_11141 HSFBRGG_11087 HSFCERG5_17084 
HSFIBBR1_15029 HSFIXG1_07095 HSFN3_16038 HSG6PD1_30014 HSGASTA_25015 HSGCSFG_17083 
HSGG02_11129 HSGLTH1_26027 HSGLUCG2_17067 HSGRFP1_24001 HSH1FNC1_30042 HSH33G1_15024 
HSHBB2_11104 HSHISH2A_11068 HSHISH2B_11070 HSHISH3_11073 HSHISH4_11074 HSHL07_07121 
HSHMG14A_31007 HSHMG17G_31009 HSHMGCOB_16050 HSHP1G1_11111 HSHSP27_17087 HSHSP70A_17088 
HSIFD1_07111 HSIFI54_25038 HSIFI56_25021 HSIFNG_07113 HSIFNIN6_27009 HSIGF2AP_17071 
HSIGFIIFE_28010 HSIGK2_07117 HSIL05_07114 HSIL1AG_14063 HSIL1B_17079 HSIL2RG1_11142 
HSIL2RG1_11143 HSINSU_07109 HSINV1_16037 HSISGA1_23013 HSKER671_11083 HSLCATG_17058 
HSLIPH01_31010 HSLMWOAS_25014 HSLMYC1_27010 HSMDR1A3_35012 HSMHBA1_15054 HSMHCGE1_14076 
HSMHCP42_15038 HSMHDC3B_16068 HSMRP14A_26026 HSMRP8A_26025 HSMT1B1_25036 HSMYCC_11146 
HSMYCC_11148 HSNEH1PR_40005 HSNFLG_26019 HSNMYC_25008 HSNMYC_25010 HSNRASR_30003 
HSOATA_30056 HSOPS_25083 HSP12AA_30062 HSP5301_11223 HSPBGD1_26007 HSPBGD2_26008 
HSPEP1_28004 HSPEPC1_28005 HSPGK11_30017 HSPRCA_32001 HSPROL1_14056 HSPS2G1_15056 
HSPSBG06_30036 HSRAS1_11149 HSRAS1_16063 HSRAS1_16064 HSRIGA_37014 HSRNBP_39002 
HSRPBG1_14047 HSRPS14_24040 HSRPS17A_41007 HSSAACT_25005 HSSISG5B_11139 HSSNRNP3_41008 
HSSOD1G1_07053 HSSOMI_16058 HSSP5_25050 HSTCBV81_17093 HSTCR3G1_17096 HSTCRA23_26001 
HSTCRT3D_11160 HSTH01_30008 HSTHIO2A_07055 HSTHYR5_14057 HSTKRA_25035 HSTNFA_11158 
HSTNFB_11159 HSTNP1_33023 HSTPI_27011 HSTRP_15041 HSTSHBA1_30071 HSTUBAG_14030 
HSTUBB2_14031 HSUBILP_28011 HSUG2A_17036 HSURODG_17059 HSVIM5RR_24039 HSVWFB_17050 
HSYUBG1_15055 M23631_30077 M24907_29008 M28265_29020 MAAPRTG_25001 MAHMGC01_11116 
MAPRP1_26024 MMABLC1A_30026 MMABLC1B_30025 MMACTCA1_29015 MMADAP_15032 MMADIG_17064 
MMAGL1_07072 MMALDH1_14050 MMAMY1A1_29011 MMAMY1A2_29013 MMAMY2AI_07097 MMAT01_29019 
MMB2ARG_29017 MMBAND31_25042 MMBAND31_25043 MMC31_07093 MMC51_40001 MMCKM1_27013 
MMCMDH1_33012 MMCRY1_07069 MMCRYG2D_11085 MMCRYS_11084 MMCSF1PR_37007 MMDH1_32002 
MMDHF5_24032 MMENDOA1_16035 MMFABPI_41010 MMFERHG_25047 MMG37_17095 MMGFAPD_14032 
MMGLUT1_39003 MMGMCSFG_11138 MMGPD01_24042 MMGSHPX_11120 MMGSTYA1_26004 MMGUSB01_30088 
MMH19G_35001 MMHI01_07052 MMHIS2BA_23007 MMHIS2BA_23008 MMHIS2BB_23009 MMHIS2BI_11069 
MMHISH31_11071 MMHISH32_11072 MMHPRT1_07058 MMHTF9_17101 MMHTF9_17102 MMIFNBG_23039 
MMIG10VH_11151 MMIG19_07118 MMIG31_07120 MMIGHAE_07116 MMIGHAI1_07115 MMIGKAL_07119 
MMIGKVH2_29002 MMIGVNP1_14073 MMIL3G_14064 MMIL4G12_15039 MMIL5G_25045 MMKALL_07096 
MMLYT22_17097 MMMBP1_27008 MMMDR1_35016 MMMH02_07122 MMMHCC4D_15053 MMMHKBA_14075 
MMMOS_29021 MMMOS_29022 MMMP25G1_24028 MMMYBG_15047 MMNPGFI_36011 MMNUCLEO_36015 
MMODCAB1_37001 MMOTC1_37005 MMP2AD1_24033 MMPLF42_16059 MMPLP1_30033 MMPOLB_16049 
MMPROT2_33029 MMPSP1G_23001 MMRASKI_16065 MMRPL30_11075 MMRPL3A_11076 MMRPOII1_28001 
MMRPS16_11077 MMSAA3G1_14039 MMTAT1_14049 MMTHY11G_11161 MMTHYS1_15031 MMTP2A_33024 
MMU1A1_17028 MMU1B2_17029 MMU7_36003 MMZFPB1_33039 OABLG1_30028 OAKERC2G_17048 
OAKERFG_17047 OCBGLO01_07074 OCCASB5_30006 OCHBAPT_11096 OCUTGLOB_07099 OSCRFA_30037 
PTAZGLO_14043 RNAFPG_17052 RNAGPA1H_27014 RNALBA1_28007 RNALDOG1_17061 RNALDOG1_17063 
RNAPOA02_30019 RNAPOA4G_30020 RNATROPO_30023 RNCAA_32004 RNCAMI1_23005 RNCASAG1_15030 
RNCASGG1_07092 RNCGRPX_29003 RNCPSIA_30055 RNCTRPB_16053 RNCY45E1_07080 RNCYCPRO_27012 
RNCYP17G_35052 RNELAI1_29005 RNELAII1_29006 RNFBAG_14035 RNFERL1_25048 RNGLA2U1_17098 
RNGROW3_07104 RNHOX_31003 RNHSC73_15051 RNIGF2_25032 RNIGF2_25033 RNIGF2_28008 
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RNLALB01_07091 RNLHB_30075 RNLPKG_16052 RNLPKG_38002 RNMHCG_16034 RNMLCA1_24037 
RNMLCA2_24038 RNMYOLC1_07065 RNOXTNP_07101 RNPBPG_16047 RNPECG1_11117 RNPF4_15040 
RNPOLBA_23015 RNPOMCG1_25006 RNPPP_30060 RNPS01_07098 RNPTH2_07108 RNPTRYI_29018 
RNRENAA_29023 RNSVFG_14078 RNTHYRP_24029 RNTNTFSG_17046 RNTOG5_11115 RNTRAN_15037 
RNU3D_17037 RNVN03_07100 RNWAP1_14040 RRCKBR_30066 RRG33B_30041 RRP450PB_33019 
RRRASH_15049 RSANGA1_36005 RSTSHBA1_30069 SGH4H2B_14028 SGHIS1_14026 SGHIS2A3_07048 
SGHIS2A3_07049 SGMAPR_41002 SSFSHBS_33036 SSMHCTA_30024 SSPKRIG1_17085 SSUPAG_14053 
XBU7SNRNA_36004 XL68KALB_16039 XLACTA2_23037 XLACTCAG_17044 XLAGA1G_11092 XLBGAI_25025 
XLBGL3_07078 XLBGLII_25024 XLGFTB_26023 XLGS17A_16093 XLHIS4_07051 XLHISH3G_14027 
XLHSP30A_14068 XLHSP70_14069 XLRNU2_17032 XLRPL14_15025 XLRPL1AG_23003 XLTF3A1_14029 
XLU5RNA_17042 XLVITE_07088 XLXK81A1_24018    
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Appendix C Drosophila multiple exon gene data set 

Non-redundant multiple exon gene data set (“multi_exon_GB.dat”) for Drosophila 
melanogaster, containing 275 gene entries. Constructed as described in the text and 
public available at http://www.fruitfly.org/sequence/drosophila-datasets.html. 
Additional background is given on the web site as well. 
 
GenBank 
Accession 

 

Definition 

AB003910 Fruitfly DNA for 88F actin, complete cds. 
AF016992 Drosophila melanogaster cytochrome P450 (CYP4D1) gene, complete 
AF018964 Drosophila melanogaster B115 cecropin A1 (CecA1) gene, complete 
AF018985 Drosophila melanogaster B009 Andropin (Anp) gene, complete cds. 
AF018998 Drosophila melanogaster B208 cecropin B (CecB) gene, complete cds. 
AF019362 Drosophila melanogaster tailless protein (tll) gene, complete cds. 
AF020309 Drosophila melanogaster SNF1A/AMP-activated protein kinase (SNF1A) 
AF022650 Drosophila melanogaster kinesin like protein at 38B (Klp38B) gene, 
AF025408 Drosophila melanogaster Windbeutel (wind) gene, complete cds. 
AF025540 Drosophila melanogaster zinc finger protein HER (her) gene, 
AF025792 Drosophila melanogaster 20S proteasome beta2 subunit (beta2_dm) 
AF025793 Drosophila melanogaster 20S proteasome alpha7 subunit (alpha7_dm) 
AF030334 Drosophila melanogaster smoothened (smo) gene, complete cds. 
AF032921 Drosophila melanogaster ribonuclease H1 (rnh1) gene, complete cds. 
AF034856 Drosophila melanogaster EF-hand protein NUCB1 (NUCB1) gene, 
AF035549 Drosophila melanogaster stress activated MAP kinase kinase 3 gene, 
AF035551 Drosophila melanogaster stress activated MAP kinase kinase 4 gene, 
AF037336 Drosophila melanogaster antigen 5-related protein (Agr) gene, 
AF039233 Drosophila melanogaster MEDEA (Med) gene, complete cds. 
AF041048 Drosophila melanogaster CD39-like NTPase gene, complete cds. 
AF044925 Drosophila melanogaster hook protein (hk) gene, complete cds. 
AF045787 Drosophila melanogaster strain DmL5 fat body protein 2 (Fbp2) gene, 
AF047010 Drosophila melanogaster asteroid protein (ast) gene, complete cds. 
AF062478 Drosophila melanogaster pyruvate kinase (Pyk) gene, complete cds. 
AF068257 Drosophila melanogaster mutL homolog (Mlh1) gene, complete cds. 
AF068271 Drosophila melanogaster mutL homolog PMS2 (Pms2) gene, complete 
AF069037 Drosophila melanogaster RGS7 gene, complete cds. 
AF069297 Drosophila melanogaster pterin-4a-carbinolamine dehydratase gene, 
AF069531 Drosophila melanogaster spindle B (spn-B) gene, complete cds. 
AF077070 Drosophila melanogaster strain OK13 runt gene, complete cds. 
AF079459 Drosophila melanogaster small ras-like GTPase (rab7) gene, complete 
AF081252 Drosophila melanogaster mutant fs(2)TW1.RU34 gamma-tubulin 
AF086715 Drosophila melanogaster putative histone deacetylase (Rpd3) gene, 
CMGCR1A D.melanogaster GCR 1 gene. 
DMACP54 D.melanogaster Acp70A gene, strain M54. 
DMAJ4446 Drosophila melanogaster ebony gene. 
DMAJ5042 Drosophila melanogaster partial Trl gene and 5'flanking region. 
DMALAS Drosophila melanogaster alas gene. 
DMANX D.melanogaster anxX gene. 
DMARIADNE D.melanogaster ariadne gene. 
DMAURG D.melanogaster aur gene. 
DMBAM D. melanogaster bag-of-marbles (bam) gene, involved in 
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DMBBBC1 D.melanogaster (Brighton) BBC1 gene. 
DMBCDG Drosophila melanogaster bicoid gene bcd. 
DMBJ1G D.melanogaster BJ1 gene for BJ1 chromatin-binding protein. 
DMBOSS D. melanogaster gene for the bride of sevenless protein. 
DMBSG25D Drosophila bsg25D locus for blastoderm-specific RNA encoding bsg25D 
DMBTDGN D.melanogaster (Canton S) BTD gene. 
DMBX200 Drosophila pH200 gene of distal BX-C region (bithorax complex). 
DMC49E4 Drosophila melanogaster cosmid 49E4. 
DMCALRET D.melanogaster gene for calreticulin. 
DMCHORS16 D. melanogaster gene for chorion protein s16. 
DMCOPIAV Drosophila copia DNA encoding virus-like particle (VLP) protein. 
DMCSDUC D.melanogaster (Canton S) ductin, subunit C proteolipid gene. 
DMCYP4D2 D.melanogaster CYP4D2 gene encoding cytochrome P-450. 
DMCYSTA D.melanogaster gene for cystatin-like protein. 
DMCZSUDMA D.melanogaster Cu-Zn superoxide dismutase gene. 
DMDEADBXA D.melanogaster DEAD-box gene, complete CDS. 
DMDES1 D.melanogaster des1 gene. 
DMDNAJLP D.melanogaster DnaJ60 gene. 
DMDNAMIN D.melanogaster Minute(2)32A gene. 
DMDRCIV2 Drosophila melanogaster DRI class IV gene for type I regulatory 
DMDTFIIAS D.melanogaster dTFIIA-S gene. 
DME011778 Drosophila melanogaster beta3 gene. 
DME5962 Drosophila melanogaster AP50 gene. 
DME9557 Drosophila melanogaster rpS21 gene. 
DMEF1AF2 D. melanogaster elongation factor 1-alpha F2 gene. 
DMEHAB D.melanogaster gene for eclosion hormone. 
DMELGG D.melanogaster Elg gene. 
DMFBP1 D.melanogaster gene for fat body protein 1. 
DMFUSED D.melanogaster fused gene sequence. 
DMGLASS Drosophila glass gene encoding a zinc finger protein. 
DMGTPBP D.melanogaster gene for GTP-binding protein. 
DMH2AVDG D.melanogaster H2AvD gene for histone H2A variant. 
DMH4R D.melanogaster H4r gene. 
DMHAIRG Drosophila melanogaster DNA for hairy gene. 
DMHGSG2 Drosophila heat shock gene 2. 
DMJ000880 Drosophila melanogaster gene for mitochondrial porin. 
DMK10G Drosophila K10 gene for putative DNA binding protein. 
DMKA12ADH D.melanogaster (strain KA12) Adh gene for alcohol dehydrogenase. 
DMKNIRPS Drosophila melanogaster zygotic gap gene knirps. 
DMKR Drosophila melanogaster Krueppel gene Kr. 
DML2AMD Drosophila alpha-methyldopa hypersensitive gene l(2)amd. 
DMLAMIN Drosophila gene for lamin. 
DMLAMINC D.melanogaster gene for lamin C. 
DMLETHAL2 D.melanogaster gene for male-specific lethal 2. 
DMMBNGEN D.melanogaster gene for lethal(3)malignant blood neoplasm-1 (MBN). 
DMMGN Drosophila melanogaster mago-nashi protein (mgn) gene, complete 
DMMP20 Drosophila melanogaster mp20 gene for muscle-specific protein. 
DMMSL3 D.melanogaster msl-3 gene. 
DMMTNG Drosophila melanogaster metallothionein gene (Mtn). 
DMMTOG Drosophila Mto gene for metallothionein. 
DMNINAA1 Drosophila melanogaster ninaA gene. 
DMOHO31 D.melanogaster oho31 gene. 
DMORUBCD4 D.melanogaster UbcD4 gene encoding ubiquitin conjugating enzyme. 
DMOSBP2 Drosophila melanogaster odorant-binding protein homolog OS-F gene, 
DMP11 D.melanogaster gene for P11 protein, A1 related hnRNP. 
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DMPCGENE D. melanogaster Pc gene for polycomb protein. 
DMPER Drosophila melanogaster per locus. 
DMPGKG D.melanogaster Pgk gene for phosphoglycerate kinase. 
DMPIMP D.melanogaster pimples gene. 
DMPP4 Drosophila melanogaster pp4 gene. 
DMPPGENE D.melanogaster gene for ref(2)Pp protein. 
DMPRODOS Drosophila melanogaster prodos gene. 
DMPRUNE Drosophila melanogaster prune gene. 
DMPS35 D.melanogaster PROS-Dm35 gene for 35KDa proteasome subunit. 
DMPUFFSP D.melanogaster mRNA for puff specific protein Bx42. 
DMR118C Drosophila melanogaster intronic R1 gene 18c. 
DMRAD54 D.melanogaster RAD54 gene. 
DMRAFPO Drosophila raf proto-oncogene. 
DMRLB1A D.melanogaster Rlb1 gene. 
DMRLC1B D.melanogaster Rlc1 gene. 
DMRNPOL2 Drosophila DmRP140 gene for RNA polymerase II 140,000 M(r)subunit. 
DMRP128 D.melanogaster DmRP128 gene for RNA polymerase III second-largest 
DMRP49 Drosophila gene for ribosomal protein 49 (rp 49). 
DMRPA1A D.melanogaster RPA1 gene. 
DMRPL19 D.melanogaster rpL19 gene for ribosomal protein L19. 
DMRPL7A D.melanogaster rpL7a gene. 
DMRPS3 D.melanogaster rps3 gene for ribosomal protein S3. 
DMSADENO D.melanogaster gene encoding S-adenosylmethionine decarboxylase. 
DMSAL Drosophila spalt gene, involved in embryogenesis. 
DMSGS5 D.melanogaster salivary gland secretion gene Sgs-5 mapping to 
DMSPALT D.melanogaster spalt gene for spalt protein. 
DMSPXGENE D.melanogaster SPX gene. 
DMSSRP2GN D.melanogaster DNA for SSRP2 gene. 
DMSTELL Drosophila stellate gene. 
DMSUHW Drosophila melanogaster su(Hw) gene for suppressor of hairy wing. 
DMSWAL D.melanogaster swallow gene (exons 1, 2 and 3). 
DMTFIIB Drosophila melanogaster Canton S transcription factor IIB (TfIIB) 
DMTHR D.melanogaster thr gene. 
DMTID56 D.melanogaster gene encoding Tid(56) protein. 
DMTOPII D.melanogaster gene for type II DNA topoisomerase. 
DMTORSO D. melanogaster torso gene for a putative tyrosine kinase receptor. 
DMTOSCAP2 D.melanogaster DNA for Tosca gene. 
DMTPIG D.melanogaster Tpi gene for Triosephosphate isomerase. 
DMTRA2W D.melanogaster tra-2 gene involved in sex determination. 
DMTRFG D.melanogaster TRF gene for TBP-related factor. 
DMTROPONI D.melanogaster tn1 gene. 
DMTSLG D.melanogaster gene for torso-like protein. 
DMTU36B Drosophila TU-36B gene, cytochrome b related protein. 
DMU03986 Drosophila melanogaster iso 1 DNA replication inhibitor plutonium 
DMU04239 Drosophila melanogaster tolloid (tld) gene, complete cds. 
DMU04822 Drosophila melanogaster Oregon R diazepam binding inhibitor (DBI) 
DMU06861 Drosophila melanogaster Canton S dihydrofolate reductase gene, 
DMU07799 Drosophila melanogaster glutathione-dependent formaldehyde 
DMU11718 Drosophila melanogaster TATA-box binding protein (TBP) gene, 
DMU15928 Drosophila melanogaster KH-domain putative RNA binding protein 
DMU18401 Drosophila melanogaster testis-specific-RRM-protein (Tsr) gene, 
DMU19731 Drosophila melanogaster phyllopod (phyl) gene, complete cds. 
DMU19742 Drosophila melanogaster vacuolar ATPase subunit A gene, complete 
DMU20542 Drosophila melanogaster lethal(1)1Bi protein (l(1)1Bi) gene, 
DMU20543 Drosophila melanogaster minute(1)1B protein (M(1)1B) gene, complete 
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DMU20566 Drosophila melanogaster Ivory Coast isochromosomal line LW8 
DMU21218 Drosophila melanogaster zeste-white 4 gene, complete cds. 
DMU21552 Drosophila melanogaster CDK5 homolog gene, complete cds. 
DMU24676 Drosophila melanogaster twinstar (tsr) gene, complete cds. 
DMU27181 Drosophila meiotic recombination and excision repair (mei-9) gene, 
DMU34039 Drosophila melanogaster glial cells missing (gcm) gene, complete 
DMU35631 Drosophila melanogaster meiotic-218 (mei-218) gene, complete cds. 
DMU38951 Drosophila melanogaster vacuolar ATPase subunit E (vha26) gene, 
DMU39739 Drosophila melanogaster scarlet protein (st) gene, complete cds. 
DMU42204 Drosophila melanogaster putative potassium channel subunit homolog 
DMU43588 Drosophila melanogaster geranylgeranyl transferase beta-subunit 
DMU43737 Drosophila melanogaster isoaspartyl methyltransferase (Pcmt) gene, 
DMU46009 Drosophila melanogaster testes-specific proteasome subunit gene, 
DMU49249 Drosophila melanogaster JNK protein kinase (DJNK) gene, complete 
DMU49439 Drosophila melanogaster trithorax group protein (ash1) gene, 
DMU51043 Drosophila melanogaster alpha esterase (aE1) gene, complete cds. 
DMU51045 Drosophila melanogaster alpha esterase (aE3) gene, complete cds. 
DMU51046 Drosophila melanogaster alpha esterase (aE4) gene, complete cds. 
DMU51047 Drosophila melanogaster alpha esterase (aE5) gene, complete cds. 
DMU52952 Drosophila melanogaster CKII beta subunit (CKII-beta1) gene, 
DMU56393 Drosophila melanogaster chromosomal protein D1 (D1) gene, complete 
DMU59923 Drosophila melanogaster glutamyl-prolyl-tRNA synthetase gene, 
DMU60298 Drosophila melanogaster DNA polymerase gamma gene, nuclear gene 
DMU63556 Drosophila melanogaster larval serum protein 1 beta subunit 
DMU63857 Drosophila melanogaster decapentaplegic protein (dpp) gene, 
DMU64721 Drosophila melanogaster 20S proteasome alpha subunit PSMA5 gene, 
DMU66357 Drosophila melanogaster ribosomal protein RpL27a gene, complete 
DMU66884 Drosophila melanogaster cubitus interruptus dominant protein (ciD) 
DMU67905 Drosophila melanogaster rhodopsin 5 (Rh5) gene, complete cds. 
DMU69607 Drosophila melanogaster Amyrel gene, complete cds. 
DMU78088 Drosophila melanogaster cytochrome P450 (Cyp6a2) gene, complete 
DMU83247 Drosophila melanogaster cuticle protein LCP65Ad gene, complete cds. 
DMU84745 Drosophila melanogaster cuticle protein LCP65Ac gene, complete cds. 
DMU84751 Drosophila melanogaster cuticle protein LCP65Ae gene, complete cds. 
DMU84752 Drosophila melanogaster cuticle protein LCP65Af gene, complete cds. 
DMU84898 Drosophila melanogaster 14-3-3 epsilon isoform gene, complete cds. 
DMUROX Drosophila melanogaster DNA for urate oxidase (EC 1.7.3.3). 
DMW13 D. melanogaster W13 homeobox gene. 
DMWHITE Drosophila melanogaster DNA sequence of white locus. 
DMXDH D. melanogaster Xdh gene for xanthine dehydrogenase (rosy locus). 
DMY10276 D.melanogaster stand still gene. 
DMYELLOW Drosophila melanogaster yellow gene. 
DMYEMA D.melanogaster gene for yemanuclein-alpha. 
DMYOLK Drosophila gene for yolk protein I (vitellogenin). 
DMYP3G Drosophila yolk polypeptide gene YP3. 
DMZESTE Drosophila melanogaster zeste gene. 
DROAFLL Drosophila melanogaster GTP-binding protein (arf-like) gene, 
DROAPRTZ Drosophila melanogaster adenine phosphoribosyltransferase (APRT) 
DROARF Drosophila melanogaster GTP-binding protein (ARF-like Arl84F) gene, 
DROARF2A Drosophila melanogaster ADP-ribosylation factor class II (ARF2) 
DROARF3B Drosophila melanogaster ADP ribosylation factor class III (ARF3) 
DROARRA D.melanogaster arrestin (Arr) gene, complete cds. 
DROBROWNPR Drosophila melanogaster brown allele IG281, complete cds. 
DROBSHHB Drosophila melanogaster brain-specific-homeobox protein gene, 
DROCDPR Drosophila melanogaster cdc37 protein gene, complete cds. 
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DROCOL4G Drosophila melanogaster collagen type IV gene, complete cds. 
DRODCDRK Fruitfly Dcdrk gene for Dcdrk kinase, complete cds. 
DRODEADA Drosophila melanogaster D-E-A-D box protein (Dbp73D), complete cds. 
DRODFUR2X Drosophila melanogaster Dfurin2 (Dfur2) gene exons 1-16, complete 
DRODGQ D.melanogaster retinal specific G-alpha protein (dgq) gene, 
DRODHORO Drosophila melanogaster dihydroorotate dehydrogenase (dhod) gene, 
DRODMRBA Fruitfly DMR gene for RecA protein homologous, complete cds. 
DRODOXA2 Drosophila melanogaster A2 component of diphenol oxidase (Dox-A2) 
DRODROSOPH Drosophila melanogaster serendipity (sry h-l) gene, complete cds. 
DRODSOR1 D.melanogaster gene for Dsor1, complete cds. 
DROECDINME Drosophila melanogaster (strain Oregon R) ecdysone-inducible 
DROEDG78A Drosophila melanogaster EDG-78 cuticle protein gene, exons 1 and 2. 
DROEDG91A Drosophila melanogaster EDG-91 gene, complete cds. 
DROESCOMBS Drosophila extra sex combs gene, exon 1-4, complete cds. 
DROEST6A D.melanogaster esterase-6 gene, complete cds. 
DROEVE D.melanogaster even-skipped (eve) gene containing homeo box. 
DROFASI D.melanogaster fasciclin I (FasI) gene, complete cds. 
DROGAS02 Drsophila melanogaster G protein alpha subunit gene, complete cds. 
DROGLDGMC D.melanogaster glucose dehydrogenase (GLD) gene, complete cds. 
DROGLTFAC Drosophila melanogaster germline transcription factor gene, 
DROHP1 D.melanogaster Hp-1 gene, complete cds. 
DROIMPDEH Drosophila melanogaster inosine monophosphate dehydrogenase gene, 
DROLAMAA Drosophila melanogaster laminin A chain gene, complete cds. 
DROLAMB2A Drosophila melanogaster laminin B2 gene, complete cds. 
DROMDR50A Drosophila melanogaster P-glycoprotein/multidrug resistance protein 
DROMEX1A D.melanogaster mex1 gene, complete cds. 
DROMNSO Drosophila melanogaster manganese superoxide dismutase (mnSOD) gene 
DROMSP316 D.melanogaster sex-specific protein msP316 (mst316) gene, complete 
DROMYLA D.melanogaster myosin light chain 2 (MLC-2) gene, complete cds. 
DRONANOS D.melanogaster nanos gene, complete cds. 
DRONOD Drosophila melanogaster kinesin-like protein (nod) gene, complete 
DROOPSA D. melanogaster opsin (ninaE) gene, complete cds. 
DROOPSAA D.melanogaster opsin gene Rh2, complete cds. 
DROOSKAR D.melanogaster oskar gene, complete cds. 
DROOTUA D.melanogaster ovarian tumor protein (otu) gene, complete cds. 
DROP40A D.melanogaster p40 (Stubarista) gene, 5' end. 
DROPCNA D.melanogaster proliferating cell nuclear antigen (PCNA) gene, 
DROPCXGEN Drosophilia melanogaster pcx gene, 5' end. 
DROPFK Drosophila melanogaster phosphofructokinase (pfk) gene, complete 
DROPGD Drosophila melanogaster 6-phosphogluconate dehydrogenase (Pgd) 
DROPGLY Drosophila melanogaster phosphoglycero mutase (Pglym78) gene, 
DROPOLA D.melanogaster POLA gene for DNA polymerase (EC 2.7.7.7) alpha. 
DROPOLYABA Drosophila melanogaster nucleolytic polyadenylate-binding protein 
DROPPP Fruit fly 49-kilodalton phosphoprotein gene, complete cds. 
DROPRD D.melanogaster paired gene (prd) encoding a segmentation protein, 
DRORBP1A Drosophila melanogaster RNA binding protein (rbp1) gene, complete 
DRORNAHEL Drosophila melanogaster DECD family putative RNA helicase gene, 
DROROUGH Drosophila melanogaster developmental protein (rough) gene, 
DRORPRIIA D.melanogaster RpII215 gene encoding RNA polymerase II, largest 
DRORPS17 D.melanogaster ribosomal protein S17 gene, complete cds. 
DRORPS6X Drosophila melanogaster ribosomal protein S6 (rps6) gene, complete 
DROSEP1HP Drosophila melanogaster filament protein homolog (sep1) gene, 
DROSEV D.melanogaster sevenless protein gene, complete cds. 
DROSNF Drosophila melanogaster nuclear protein (snf) gene, complete cds. 
DROSO7LESA D.melanogaster son of sevenless gene, complete cds. 
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DROSSGA Drosophila melanogaster myosin II (sqh) gene, complete cds. 
DROSSL Drosophila melanogaster casein kinase II beta-subunit homologue 
DROSUSG Drosophila melanogaster suppressor of sable gene, complete cds. 
DROTRP D.melanogaster trp protein gene, complete cds. 
DROTUBA1 D.melanogaster alpha-tubulin gene (alpha-1), complete cds. 
DROTUBA4 D.melanogaster alpha-tubulin gene (alpha-4), complete cds. 
DROVERM D.melanogaster vermilion protein gene, complete cds. 
DROVITB Drosophila vitelline membrane protein 3C-1 gene, complete cds. 
DROXPACDR Drosophila melanogaster Dxpa gene, complete cds. 
DSAJ2740 Drosophila melanogaster capsuleen gene. 
U00145 Drosophila melanogaster catalase gene, complete cds. 
U00683 Drosophila melanogaster formylglycineamide ribotide 
U00790 Drosophila melanogaster proteasome subunit (l(3)73Ai) gene, 
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Appendix D Drosophila single exon gene data set 

Non-redundant single exon gene data set (“multi_exon_GB.dat”) for Drosophila 
melanogaster containing 141 gene entries. Constructed as described in the text and 
public available at http://www.fruitfly.org/sequence/drosophila-datasets.html. 
Additional background is given on the web site. 
 
GenBank 
Accession 

 

Definition 

AF010325 Drosophila melanogaster CHIP (Chip) gene, complete cds. 
AF019020 Drosophila melanogaster B09 diptericin (Dipt) gene, complete cds. 
AF030443 Drosophila melanogaster ubiquitin-conjugating enzyme 9 (UBC9) gene, 
AF030959 Drosophila melanogaster metchnikowin precursor (Mtk) gene, complete 
AF035546 Drosophila melanogaster p38a MAP kinase gene, complete cds. 
AF053725 Drosophila melanogaster myristoyl-CoA: protein N-myristoyl 
AF069530 Drosophila melanogaster 9 kD basic protein (c550) gene, complete 
DM1731L3 Drosophila retrotransposon 1731 3' long terminal repeat (LTR). 
DMACTR66B D.melanogaster AcTr66B gene for actin-related protein. 
DMAMYAG1 Drosophila alpha-amylase gene (locus 1) and flanking regions. 
DMANGEL D.melanogaster angel gene. 
DMAPTER D.melanogaster apterous gene for developmental regulatory protein. 
DMARM D.melanogaster arm E16 and E9 genes for armadillo protein. 
DMASCT3 Drosophila T3 gene of achaete-scute complex (AS-C). 
DMASCT8 Drosophila T8 gene of achaete-scute complex (AS-C). 
DMBARI1 D.melanogaster Bari-1 mobile element DNA. 
DMBLPP D.melanogaster (Oregon R) gene for blastopia polyprotein. 
DMBX189A Drosophila distal BX-C region (bithorax complex) pH189 5' region;. 
DMC137E7 Drosophila melanogaster cosmid 137E7. 
DMCOLT D.melanogaster colt gene. 
DMCSGS D.melanogaster Cregon R Heidelberg Sgs-4 gene for salivary glue 
DMCYCDC3 Drosophila melanogaster cytochrome c gene DC3. 
DMCYCDC4 Drosophila melanogaster cytochrome c gene DC4. 
DMDC0 Drosophila melanogaster DC0 gene for catalytic subunit of 
DMDFD Drosophila mRNA for Deformed (Dfd) protein. 
DMDFR2 D.melanogaster DFR2 gene for FGF-receptor homologue. 
DMDISCO D.melanogaster disconnected (disco) gene for protein causing 
DMDM11 D.melanogaster micropia-Dm11 retrotransposon. 
DMDOA D.melanogaster Doa protein kinase gene. 
DMDRIBBLE Drosophlila melanogaster DNA for dribble gene. 
DMDROSOCN D.melanogaster gene encoding antibacterial peptide drosocin. 
DME010298 Drosophila melanogaster retrotransposon-like element. 
DME010387 Drosophila melanogaster mRNA for beadex/dLMO protein. 
DME17355 Drosophila melanogaster PPN 58A gene. 
DME223042 Drosophila melanogaster noisette gene. 
DMENOLAS Drosophila gene for enolase (2-phospho-D-glycerate hydrolase) (EC 
DMESPLM4 D.melanogaster E(spl) transcription unit m4 gene, enhancer of split 
DMESPLM5 D.melanogaster E(spl) transcription unit m5 gene, enhancer of 
DMHBG Drosophila melanogaster hunchback gene encoding a finger protein. 
DMHETA1 D.melanogaster Het-A transposable element 17B3 gene for ga-like 
DMHISH1 Drosophila melanogaster H1 histone gene. 
DMHLHMB D.melanogaster gene E(Spl)-HLH-mbeta for helix-loop-helix-protein. 
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DMHOBOG Drosophila transposable element hobo 108. 
DMHS09 D. melanogaster heat shock gene hsp23 with flanking sequences. 
DMHSP22G Drosophila melanogaster gene for heat shock protein hsp22. 
DMHSP26G Drosophila melanogaster gene for heat shock protein hsp26. 
DMHSP27G Drosophila melanogaster gene for heat shock protein hsp27. 
DMHSP7 Alpha-gamma fragment from the Drosophila heat shock genes. 
DMHSPG3 Drosophila heat shock gene 3 from 67B locus. 
DMHSTH331 D.melanogaster mRNA for histone H3.3. 
DMIS297 Drosophila melanogaster transposable element 297. 
DMKRAKEN Drosophila melanogaster kraken gene. 
DMLYSDG D.melanogaster LysD gene for lysozyme D. 
DMLYSPG D.melanogaster LysP gene for lysozyme P. 
DMMDG3 D.melanogaster mdg3 retrotransposon DNA. 
DMMSTBAGE D.melanogaster gene for protamine (mst35Ba). 
DMNESTED D.melanogaster nested gene for putative Sgs protein. 
DMNEU Drosophila neu mRNA. 
DMNG4 D.melanogaster ng-4 gene. 
DMNULLOG D.melanogaster nullo gene. 
DMPP1 D.melanogaster gene for protein phosphase 1. 
DMRAS3 Drosophila Dras3 gene. 
DMREPDNA2 D.melanogaster (Canton S) repeat region DNA. 
DMRH92CD Drosophila R7 photoreceptor cell opsin gene. 
DMRPA1G D.melanogaster rpA1 gene. 
DMRPS31 Drosophila melanogaster gene for putative ribosomal protein S31. 
DMRUDG Drosophila melanogaster rudimentary gene. 
DMSLP1D D.melanogaster sloppy paired 1 gene for slp1 protein. 
DMSLP2D D.melanogaster sloppy paired 2 gene for slp2 protein. 
DMSPERM Drosophila Mst87F gene for put. structural sperm protein. 
DMSUPFUSE D.melanogaster suppressor of fused gene. 
DMTHB1 Drosophila melanogaster transposon HB1. 
DMTPOD Drosophila DNA for transposable element D near 3'end of dnc gene. 
DMTRYAG Drosophila melanogaster alpha-gene for trypsin-like enzyme. 
DMU01335 Drosophila melanogaster ribosomal protein S2 (sop) gene, complete 
DMU03277 Drosophila melanogaster Sevelin clone D69 cell cycle arrest protein 
DMU03288 Drosophila melanogaster Sevelin clone D52 cell cycle arrest protein 
DMU05850 Drosophila melanogaster spatzle (spz) gene, complete cds. 
DMU10184 Drosophila melanogaster drosE2F1 protein (drosE2F1) gene, complete 
DMU13014 Drosophila melanogaster phosphorylase kinase gamma gene, complete 
DMU18130 Drosophila melanogaster masquerade (mas) gene, complete cds. 
DMU18307 Drosophila melanogaster heat shock locus (hsr-omega), omega-pre-c, 
DMU21123 Drosophila melanogaster ena polypeptide gene, complete cds. 
DMU23420 Drosophila melanogaster transposon BEL unknown protein gene, 
DMU26939 Drosophila melanogaster arginine kinase (Argk) gene, complete cds. 
DMU41064 Drosophila melanogaster putative extracellular ligand trunk gene, 
DMU41476 Drosophila melanogaster iota trypsin (iotaTry) gene, complete cds. 
DMU42425 Drosophila melanogaster putative Toll-related transmembrane 
DMU43583 Drosophila melanogaster kinase suppressor of ras (ksr) gene, 
DMU46008 Drosophila melanogaster testes-specific proteasome subunit 
DMU52192 Drosophila melanogaster phosphoinositide 3-kinase (cpk) gene, 
DMU56257 Drosophila melanogaster intronic protein 259 (IP259) gene, complete 
DMU65589 Drosophila melanogaster Dfz2 (Dfz2) gene, complete cds. 
DMU71219 Drosophila melanogaster males-absent on the first (mof) gene, 
DMU73490 Drosophila melanogaster putative phosphatidyl-inositol-4-phosphate 
DMU84749 Drosophila melanogaster cuticle protein LCP65Aa gene, complete cds. 
DMU84750 Drosophila melanogaster cuticle protein ACP65A gene, complete cds. 
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DMU90947 Drosophila melanogaster accessory gland protein Acp76A (Acp76A) 
DMU91994 Drosophila melanogaster selenophosphate synthetase (ptuf1) gene, 
DMU92867 Drosophila melanogaster bZIP transcription factor (vrille) gene, 
DMUBEX D.melanogaster gene for ubiquitin extension protein. 
DMY16065 Drosophila melanogaster a6 gene. 
DRO60AP Drosophila transforming growth factor B-like protein gene (60A), 
DROACS1 D.melanogaster achaete gene encoding nerve differentiation, 
DROACS2 D.melanogaster scute gene encoding nerve differentiation, complete 
DROAMA D.melanogaster amalgam protein (ama) gene, complete cds. 
DROANKY Drosophila melanogaster ankyrin mRNA, complete cds. 
DROCACTUSA Drosophila melanogaster cactus zygotic protein exons 1-6, complete 
DROCLPTN Drosophila melanogaster calphotin gene, complete cds. 
DRODEBB Drosophila melanogaster membrane-associated protein (deb-b) gene, 
DRODEC1A D.melanogaster defective chorion-1 fc125 (dec-1) gene, complete 
DRODSK D.melanogaster sulfated tyrosine-kinin (DSK) gene, complete cds. 
DROESCARGO Drosophila melanogaster developmental escargot-encoded protein 
DROFAT Drosophila melanogaster fat protein (fat) gene, complete cds. 
DROFMRFA2 D.melanogaster FMRFamide neuropeptide gene, exon 2. 
DROFREQ Drosophila melanogaster frequenin gene, complete cds, introns in 
DROGADPH1 D.melanogaster glyceraldehyde-3-phosphate dehydrogenase-1 gene. 
DROGCL Drosophila melanogaster (clone 10B-1) germ cell-less protein (gcl1) 
DROGGBCS D.melanogaster (clones T-beta-1E, T-beta-1J) guanine 
DROHMGCO D.melanogaster 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMG 
DROHSC4A Drosophila melanogaster heat shock protein cognate 70 (Hsc4) gene, 
DROIMP Drosophila melanogaster 20-hydroxyecdysone ( IMP-E2) mRNA, complete 
DROJUN D.melanogaster Djun gene, complete cds. 
DROMSL1A Drosophila melanogaster male-specific lethal-1 protein (msl-1) 
DRONCX Drosophila melanogaster (clone DR1) Na/Ca exchange protein (NCX) 
DRORHO1A Drosophila melanogaster Rho1 mRNA, complete cds. 
DRORNP70K D.melanogaster U1 70K small nuclear ribonucleoprotein gene, 
DRORPIIPD D.melanogaster RPII215 gene encoding RNA polymerase II subunit, 5' 
DROS1C4 D.melanogaster beta-amyloid-like gene, complete cds. 
DROSCA D.melanogaster scabrous protein gene, complete cds. 
DROSER1 D.melanogaster serine protease 3 (SER3) gene, complete cds. 
DROSIST sis-Drosophila melanogaster sister-less-a (bZIP) protein gene, 
DROSPLEPMC Drosophila melanogaster split locus enhancer protein mC (E(spl)) 
DROTFIISAA Drosophila melanogaster transcription elongation factor (TfIIS) 
DROTU4A D.melanogaster TU-4 mRNA encoding vitelline membrane protein, 
DROVITA Drosophila vitelline membrane protein 26A-1 gene, complete cds. 
DROVMP D.melanogaster vitelline membrane protein gene, complete cds. 
S61734S2 omb (biD4)=optomotor-blind gene [Drosophila melanogaster, larvae, 
S66940 RPII15=RNA polymerase II subunit 9 [Drosophila melanogaster, 
S74038 preprocorazonin (Drosophila melanogaster, Genomic, 680 nt). 
SCU41441 Drosophila melanogaster macrolide binding protein (FKBP12) gene, 
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